論文の概要: Tackling Execution-Based Evaluation for NL2Bash
- arxiv url: http://arxiv.org/abs/2405.06807v1
- Date: Fri, 10 May 2024 20:45:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 19:55:18.256661
- Title: Tackling Execution-Based Evaluation for NL2Bash
- Title(参考訳): NL2Bashの処理実行に基づく評価
- Authors: Ngoc Phuoc An Vo, Brent Paulovicks, Vadim Sheinin,
- Abstract要約: 実行ベース評価(EE)は、システムにおけるモデル予測の実行出力と期待出力を比較することにより、予測されたコードを検証することができる。
我々は、NL2Bashで人気のあるLarge Language Modelを評価するために、50のプロンプトを作成します。
- 参考スコア(独自算出の注目度): 0.9176056742068815
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given recent advancement of Large Language Models (LLMs), the task of translating from natural language prompts to different programming languages (code generation) attracts immense attention for wide application in different domains. Specially code generation for Bash (NL2Bash) is widely used to generate Bash scripts for automating different tasks, such as performance monitoring, compilation, system administration, system diagnostics, etc. Besides code generation, validating synthetic code is critical before using them for any application. Different methods for code validation are proposed, both direct (execution evaluation) and indirect validations (i.e. exact/partial match, BLEU score). Among these, Execution-based Evaluation (EE) can validate the predicted code by comparing the execution output of model prediction and expected output in system. However, designing and implementing such an execution-based evaluation system for NL2Bash is not a trivial task. In this paper, we present a machinery for execution-based evaluation for NL2Bash. We create a set of 50 prompts to evaluate some popular LLMs for NL2Bash. We also analyze several advantages and challenges of EE such as syntactically different yet semantically equivalent Bash scripts generated by different LLMs, or syntactically correct but semantically incorrect Bash scripts, and how we capture and process them correctly.
- Abstract(参考訳): 近年のLarge Language Models (LLMs) の発展に伴い、自然言語から異なるプログラミング言語(コード生成)に翻訳する作業は、異なるドメインでの幅広い応用において大きな注目を集めている。
特に、Bash(NL2Bash)用のコード生成は、パフォーマンス監視、コンパイル、システム管理、システム診断など、さまざまなタスクを自動化するBashスクリプトを生成するために広く使用されている。
コード生成の他に、どんなアプリケーションにも使用する前に、合成コードを検証することが重要である。
直接的(実行評価)と間接的(正確な/部分一致、BLEUスコア)のバリデーションの異なる方法が提案されている。
これらのうち、実行ベース評価(EE)は、システムにおけるモデル予測の実行出力と期待出力を比較することで、予測されたコードを検証することができる。
しかし,このようなNL2Bashの実行ベース評価システムの設計と実装は簡単な作業ではない。
本稿では,NL2Bashの実行に基づく評価手法を提案する。
我々は、NL2Bashで人気のあるLLMを評価するために、50のプロンプトを作成します。
我々はまた、異なるLLMによって生成された、構文的に異なるが意味的に等価なBashスクリプトや、構文的に正しいが、セマンティックに正しくないBashスクリプト、それらを正しくキャプチャして処理する方法など、EEのいくつかの利点と課題を分析します。
関連論文リスト
- AIME: AI System Optimization via Multiple LLM Evaluators [79.03422337674664]
AIME は複数の LLM を利用した評価プロトコルであり、それぞれが独立した基準で評価を生成し、結合を通してそれらを結合する。
コード生成タスクにおける AIME のベースラインメソッドのパフォーマンスは,LeetCodeHard と HumanEval データセットの単一 LLM 評価プロトコルよりも最大 62% 高いエラー検出率,最大 16% 高い成功率で向上している。
論文 参考訳(メタデータ) (2024-10-04T04:03:24Z) - DOCE: Finding the Sweet Spot for Execution-Based Code Generation [69.5305729627198]
本稿では,候補生成,$n$-best再ランク,最小ベイズリスク(MBR)復号化,自己老化などを含む包括的フレームワークを提案する。
本研究は,実行ベースメソッドの重要性と,実行ベースメソッドと実行フリーメソッドとの差を明らかにする。
論文 参考訳(メタデータ) (2024-08-25T07:10:36Z) - Generating Unseen Code Tests In Infinitum [1.0674604700001968]
本稿では,プログラミングタスクやプログラミング言語にまたがって一般化するベンチマークのバリエーションを作成する手法を提案する。
我々は、Pythonでテキストからコードを生成するタスクに対して、textitauto-regressionと呼ばれる1つのベンチマークを実装した。
論文 参考訳(メタデータ) (2024-07-29T08:11:20Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Benchは、既存のコードリポジトリを利用してタスクを実行する現実世界のプログラミングアプリケーションに根ざしたベンチマークである。
LLM(Large Language Model)とAIエージェントの両方を評価するために、事前に定義されたデプロイメント環境でLLMのテキスト-コード変換を評価するML-LLM-Benchと、Linuxサンドボックス環境でエンドツーエンドのタスク実行で自律エージェントをテストするML-Agent-Benchの2つの設定が採用されている。
論文 参考訳(メタデータ) (2023-11-16T12:03:21Z) - CodeScope: An Execution-based Multilingual Multitask Multidimensional Benchmark for Evaluating LLMs on Code Understanding and Generation [18.354576598908448]
LLM(Large Language Models)は、人間のプログラミング支援に優れた性能を発揮している。
LLMのコード理解と生成能力を評価するための既存のベンチマークは、厳しい制限に悩まされている。
実行ベース,多言語,マルチタスク,多次元評価ベンチマークであるCodeScopeを紹介する。
論文 参考訳(メタデータ) (2023-11-14T23:18:52Z) - PPTC Benchmark: Evaluating Large Language Models for PowerPoint Task
Completion [96.47420221442397]
我々はPowerPoint Task Completionベンチマークを導入し、大規模言語モデルがマルチターン・マルチモーダル命令を完了する能力を評価する。
また,ラベルAPIシーケンスではなく,予測ファイルに基づいてLCMが命令を終了するかどうかを評価するPTX-Match評価システムを提案する。
その結果、GPT-4はシングルターン対話テストにおいて75.1%の精度で他のLLMよりも優れていたが、セッション全体を完成させる際の課題に直面しており、セッションの精度は6%に過ぎなかった。
論文 参考訳(メタデータ) (2023-11-03T08:06:35Z) - InterCode: Standardizing and Benchmarking Interactive Coding with
Execution Feedback [50.725076393314964]
標準的な強化学習環境として,インタラクティブコーディングの軽量でフレキシブルで使いやすいフレームワークであるInterCodeを紹介した。
私たちのフレームワークは、言語とプラットフォームに依存しない、自己完結型のDocker環境を使用して、安全で再現可能な実行を提供します。
我々は、異なるプロンプト戦略で構成された複数の最先端LLMを評価することにより、InterCodeの生存性をテストベッドとして示す。
論文 参考訳(メタデータ) (2023-06-26T17:59:50Z) - xCodeEval: A Large Scale Multilingual Multitask Benchmark for Code
Understanding, Generation, Translation and Retrieval [32.60391966381949]
我々はこれまでで最大のマルチ言語マルチタスクベンチマークであるxCodeEvalを紹介した。
コード理解、生成、翻訳、検索を含む合計7ドルのタスクが特徴だ。
xCodeEvalは実行ベースの評価を採用し、多言語コード実行エンジンであるExecEvalを提供する。
論文 参考訳(メタデータ) (2023-03-06T10:08:51Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
本稿では,プログラムの実行結果の検証を学習することで,言語からコードへの生成を改善するシンプルな手法であるLEVERを提案する。
具体的には、LLMからサンプリングされたプログラムが、自然言語入力、プログラム自体とその実行結果に基づいて正しいか否かを判定するために、検証者を訓練する。
LEVER はベースコード LLMs (4.6% から 10.9% まで) を継続的に改善し、それらすべてに対して新しい最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-16T18:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。