論文の概要: Execution-Based Evaluation of Natural Language to Bash and PowerShell for Incident Remediation
- arxiv url: http://arxiv.org/abs/2405.06807v2
- Date: Mon, 16 Dec 2024 23:13:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:56:23.308481
- Title: Execution-Based Evaluation of Natural Language to Bash and PowerShell for Incident Remediation
- Title(参考訳): インシデント修復のためのバッシュとPowerShellに対する自然言語の実行に基づく評価
- Authors: Ngoc Phuoc An Vo, Brent Paulovicks, Vadim Sheinin,
- Abstract要約: 生成されたコードが構文的かつ意味論的に正しいか、意図した通りに正しく実行できるかを確認することは重要である。
大規模言語モデルによって生成されたコードの品質を評価するための現在の手法は、表面形状の類似度指標に大きく依存しています。
Bashを評価するための3つのテストスイートを作成した最初の実行ベース評価プラットフォームを提示する。
- 参考スコア(独自算出の注目度): 0.9176056742068815
- License:
- Abstract: Given recent advancements of Large Language Models (LLMs), code generation tasks attract immense attention for wide application in different domains. In an effort to evaluate and select a best model to automatically remediate system incidents discovered by Application Performance Monitoring (APM) platforms, it is crucial to verify if the generated code is syntactically and semantically correct, and whether it can be executed correctly as intended. However, current methods for evaluating the quality of code generated by LLMs heavily rely on surface form similarity metrics (e.g. BLEU, ROUGE, and exact/partial match) which have numerous limitations. In contrast, execution based evaluation focuses more on code functionality and does not constrain the code generation to any fixed solution. Nevertheless, designing and implementing such execution-based evaluation platform is not a trivial task. There are several works creating execution-based evaluation platforms for popular programming languages such as SQL, Python, Java, but limited or no attempts for scripting languages such as Bash and PowerShell. In this paper, we present the first execution-based evaluation platform in which we created three test suites (total 125 handcrafted test cases) to evaluate Bash (both single-line commands and multiple-line scripts) and PowerShell codes generated by LLMs. We benchmark seven closed and open-source LLMs using our platform with different techniques (zero-shot vs. few-shot learning).
- Abstract(参考訳): LLM(Large Language Models)の最近の進歩を踏まえると、コード生成タスクは異なるドメインにおける広範囲のアプリケーションに対して大きな注目を集めている。
アプリケーションパフォーマンスモニタリング(APM)プラットフォームで発見されたシステムインシデントを自動的に修正する最良のモデルの評価と選択を行うため、生成されたコードが構文的に、意味的に正しいか、意図した通りに正しく実行できるかを検証することが不可欠である。
しかし、LLMによって生成されたコードの品質を評価するための現在の手法は、多くの制限がある表面形状の類似度(例えばBLEU、ROUGE、精度/部分マッチング)に大きく依存している。
対照的に、実行ベースの評価はコード機能に重点を置いており、コード生成を固定されたソリューションに制限しない。
それでも、このような実行ベースの評価プラットフォームの設計と実装は簡単な作業ではありません。
SQL、Python、Javaのような一般的なプログラミング言語向けの実行ベースの評価プラットフォームを作成する作業はいくつかあるが、BashやPowerShellのようなスクリプト言語に対する試みは限定的または全く行われていない。
本稿では,Bash (単行コマンドと複数行スクリプトの両方) と LLM が生成するPowerShell コードを評価するための3つのテストスイート (Total 125手作りテストケース) を作成した最初の実行ベース評価プラットフォームを提案する。
私たちは、異なる技術(ゼロショット対数ショットの学習)でプラットフォームを使用して、7つのクローズドでオープンソースのLCMをベンチマークします。
関連論文リスト
- AIME: AI System Optimization via Multiple LLM Evaluators [79.03422337674664]
AIME は複数の LLM を利用した評価プロトコルであり、それぞれが独立した基準で評価を生成し、結合を通してそれらを結合する。
コード生成タスクにおける AIME のベースラインメソッドのパフォーマンスは,LeetCodeHard と HumanEval データセットの単一 LLM 評価プロトコルよりも最大 62% 高いエラー検出率,最大 16% 高い成功率で向上している。
論文 参考訳(メタデータ) (2024-10-04T04:03:24Z) - DOCE: Finding the Sweet Spot for Execution-Based Code Generation [69.5305729627198]
本稿では,候補生成,$n$-best再ランク,最小ベイズリスク(MBR)復号化,自己老化などを含む包括的フレームワークを提案する。
本研究は,実行ベースメソッドの重要性と,実行ベースメソッドと実行フリーメソッドとの差を明らかにする。
論文 参考訳(メタデータ) (2024-08-25T07:10:36Z) - Generating Unseen Code Tests In Infinitum [1.0674604700001968]
本稿では,プログラミングタスクやプログラミング言語にまたがって一般化するベンチマークのバリエーションを作成する手法を提案する。
我々は、Pythonでテキストからコードを生成するタスクに対して、textitauto-regressionと呼ばれる1つのベンチマークを実装した。
論文 参考訳(メタデータ) (2024-07-29T08:11:20Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Benchは、既存のコードリポジトリを利用してタスクを実行する現実世界のプログラミングアプリケーションに根ざしたベンチマークである。
LLM(Large Language Model)とAIエージェントの両方を評価するために、事前に定義されたデプロイメント環境でLLMのテキスト-コード変換を評価するML-LLM-Benchと、Linuxサンドボックス環境でエンドツーエンドのタスク実行で自律エージェントをテストするML-Agent-Benchの2つの設定が採用されている。
論文 参考訳(メタデータ) (2023-11-16T12:03:21Z) - CodeScope: An Execution-based Multilingual Multitask Multidimensional Benchmark for Evaluating LLMs on Code Understanding and Generation [18.354576598908448]
LLM(Large Language Models)は、人間のプログラミング支援に優れた性能を発揮している。
LLMのコード理解と生成能力を評価するための既存のベンチマークは、厳しい制限に悩まされている。
実行ベース,多言語,マルチタスク,多次元評価ベンチマークであるCodeScopeを紹介する。
論文 参考訳(メタデータ) (2023-11-14T23:18:52Z) - PPTC Benchmark: Evaluating Large Language Models for PowerPoint Task
Completion [96.47420221442397]
我々はPowerPoint Task Completionベンチマークを導入し、大規模言語モデルがマルチターン・マルチモーダル命令を完了する能力を評価する。
また,ラベルAPIシーケンスではなく,予測ファイルに基づいてLCMが命令を終了するかどうかを評価するPTX-Match評価システムを提案する。
その結果、GPT-4はシングルターン対話テストにおいて75.1%の精度で他のLLMよりも優れていたが、セッション全体を完成させる際の課題に直面しており、セッションの精度は6%に過ぎなかった。
論文 参考訳(メタデータ) (2023-11-03T08:06:35Z) - InterCode: Standardizing and Benchmarking Interactive Coding with
Execution Feedback [50.725076393314964]
標準的な強化学習環境として,インタラクティブコーディングの軽量でフレキシブルで使いやすいフレームワークであるInterCodeを紹介した。
私たちのフレームワークは、言語とプラットフォームに依存しない、自己完結型のDocker環境を使用して、安全で再現可能な実行を提供します。
我々は、異なるプロンプト戦略で構成された複数の最先端LLMを評価することにより、InterCodeの生存性をテストベッドとして示す。
論文 参考訳(メタデータ) (2023-06-26T17:59:50Z) - xCodeEval: A Large Scale Multilingual Multitask Benchmark for Code
Understanding, Generation, Translation and Retrieval [32.60391966381949]
我々はこれまでで最大のマルチ言語マルチタスクベンチマークであるxCodeEvalを紹介した。
コード理解、生成、翻訳、検索を含む合計7ドルのタスクが特徴だ。
xCodeEvalは実行ベースの評価を採用し、多言語コード実行エンジンであるExecEvalを提供する。
論文 参考訳(メタデータ) (2023-03-06T10:08:51Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
本稿では,プログラムの実行結果の検証を学習することで,言語からコードへの生成を改善するシンプルな手法であるLEVERを提案する。
具体的には、LLMからサンプリングされたプログラムが、自然言語入力、プログラム自体とその実行結果に基づいて正しいか否かを判定するために、検証者を訓練する。
LEVER はベースコード LLMs (4.6% から 10.9% まで) を継続的に改善し、それらすべてに対して新しい最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-16T18:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。