Execution-Based Evaluation of Natural Language to Bash and PowerShell for Incident Remediation
- URL: http://arxiv.org/abs/2405.06807v2
- Date: Mon, 16 Dec 2024 23:13:26 GMT
- Title: Execution-Based Evaluation of Natural Language to Bash and PowerShell for Incident Remediation
- Authors: Ngoc Phuoc An Vo, Brent Paulovicks, Vadim Sheinin,
- Abstract summary: It is crucial to verify if the generated code is syntactically and semantically correct, and whether it can be executed correctly as intended.
Current methods for evaluating the quality of code generated by Large Language Models heavily rely on surface form similarity metrics.
We present the first execution-based evaluation platform in which we created three test suites to evaluate Bash.
- Score: 0.9176056742068815
- License:
- Abstract: Given recent advancements of Large Language Models (LLMs), code generation tasks attract immense attention for wide application in different domains. In an effort to evaluate and select a best model to automatically remediate system incidents discovered by Application Performance Monitoring (APM) platforms, it is crucial to verify if the generated code is syntactically and semantically correct, and whether it can be executed correctly as intended. However, current methods for evaluating the quality of code generated by LLMs heavily rely on surface form similarity metrics (e.g. BLEU, ROUGE, and exact/partial match) which have numerous limitations. In contrast, execution based evaluation focuses more on code functionality and does not constrain the code generation to any fixed solution. Nevertheless, designing and implementing such execution-based evaluation platform is not a trivial task. There are several works creating execution-based evaluation platforms for popular programming languages such as SQL, Python, Java, but limited or no attempts for scripting languages such as Bash and PowerShell. In this paper, we present the first execution-based evaluation platform in which we created three test suites (total 125 handcrafted test cases) to evaluate Bash (both single-line commands and multiple-line scripts) and PowerShell codes generated by LLMs. We benchmark seven closed and open-source LLMs using our platform with different techniques (zero-shot vs. few-shot learning).
Related papers
- AIME: AI System Optimization via Multiple LLM Evaluators [79.03422337674664]
AIME is an evaluation protocol that utilizes multiple LLMs that each independently generate an evaluation on separate criteria and then combine them via concatenation.
We show AIME outperforming baseline methods in code generation tasks, with up to $62%$ higher error detection rate and up to $16%$ higher success rate than a single LLM evaluation protocol on LeetCodeHard and HumanEval datasets.
arXiv Detail & Related papers (2024-10-04T04:03:24Z) - DOCE: Finding the Sweet Spot for Execution-Based Code Generation [69.5305729627198]
We propose a comprehensive framework that includes candidate generation, $n$-best reranking, minimum Bayes risk (MBR) decoding, and self-ging as the core components.
Our findings highlight the importance of execution-based methods and the difference gap between execution-based and execution-free methods.
arXiv Detail & Related papers (2024-08-25T07:10:36Z) - Generating Unseen Code Tests In Infinitum [1.0674604700001968]
We present a method for creating benchmark variations that generalize across coding tasks and programming languages.
We implement one benchmark, called textitauto-regression, for the task of text-to-code generation in Python.
arXiv Detail & Related papers (2024-07-29T08:11:20Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Bench is a benchmark rooted in real-world programming applications that leverage existing code repositories to perform tasks.
To evaluate both Large Language Models (LLMs) and AI agents, two setups are employed: ML-LLM-Bench for assessing LLMs' text-to-code conversion within a predefined deployment environment, and ML-Agent-Bench for testing autonomous agents in an end-to-end task execution within a Linux sandbox environment.
arXiv Detail & Related papers (2023-11-16T12:03:21Z) - CodeScope: An Execution-based Multilingual Multitask Multidimensional Benchmark for Evaluating LLMs on Code Understanding and Generation [18.354576598908448]
Large Language Models (LLMs) have demonstrated remarkable performance on assisting humans in programming.
Existing benchmarks for evaluating the code understanding and generation capacities of LLMs suffer from severe limitations.
We introduce CodeScope, an execution-based, multilingual, multitask, multidimensional evaluation benchmark.
arXiv Detail & Related papers (2023-11-14T23:18:52Z) - PPTC Benchmark: Evaluating Large Language Models for PowerPoint Task
Completion [96.47420221442397]
We introduce the PowerPoint Task Completion benchmark to assess the ability of Large Language Models to finish multi-turn, multi-modal instructions.
We also propose the PPTX-Match Evaluation System that evaluates if LLMs finish the instruction based on the prediction file rather than the label API sequence.
The results show that GPT-4 outperforms other LLMs with 75.1% accuracy in single-turn dialogue testing but faces challenges in completing entire sessions, achieving just 6% session accuracy.
arXiv Detail & Related papers (2023-11-03T08:06:35Z) - InterCode: Standardizing and Benchmarking Interactive Coding with
Execution Feedback [50.725076393314964]
We introduce InterCode, a lightweight, flexible, and easy-to-use framework of interactive coding as a standard reinforcement learning environment.
Our framework is language and platform agnostic, uses self-contained Docker environments to provide safe and reproducible execution.
We demonstrate InterCode's viability as a testbed by evaluating multiple state-of-the-art LLMs configured with different prompting strategies.
arXiv Detail & Related papers (2023-06-26T17:59:50Z) - xCodeEval: A Large Scale Multilingual Multitask Benchmark for Code
Understanding, Generation, Translation and Retrieval [32.60391966381949]
We introduce xCodeEval, the largest executable multilingual multitask benchmark to date.
It features a total of $7$ tasks involving code understanding, generation, translation and retrieval.
xCodeEval adopts an execution-based evaluation and offers a multilingual code execution engine, ExecEval.
arXiv Detail & Related papers (2023-03-06T10:08:51Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
We propose LEVER, a simple approach to improve language-to-code generation by learning to verify the generated programs with their execution results.
Specifically, we train verifiers to determine whether a program sampled from the LLMs is correct or not based on the natural language input, the program itself and its execution results.
LEVER consistently improves over the base code LLMs(4.6% to 10.9% with code-davinci) and achieves new state-of-the-art results on all of them.
arXiv Detail & Related papers (2023-02-16T18:23:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.