FineParser: A Fine-grained Spatio-temporal Action Parser for Human-centric Action Quality Assessment
- URL: http://arxiv.org/abs/2405.06887v1
- Date: Sat, 11 May 2024 02:57:16 GMT
- Title: FineParser: A Fine-grained Spatio-temporal Action Parser for Human-centric Action Quality Assessment
- Authors: Jinglin Xu, Sibo Yin, Guohao Zhao, Zishuo Wang, Yuxin Peng,
- Abstract summary: Existing action quality assessment (AQA) methods mainly learn deep representations at the video level for scoring diverse actions.
Due to the lack of a fine-grained understanding of actions in videos, they harshly suffer from low credibility and interpretability, thus insufficient for stringent applications, such as Olympic diving events.
We argue that a fine-grained understanding of actions requires the model to perceive and parse actions in both time and space, which is also the key to the credibility and interpretability of the AQA technique.
- Score: 30.601466217201253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing action quality assessment (AQA) methods mainly learn deep representations at the video level for scoring diverse actions. Due to the lack of a fine-grained understanding of actions in videos, they harshly suffer from low credibility and interpretability, thus insufficient for stringent applications, such as Olympic diving events. We argue that a fine-grained understanding of actions requires the model to perceive and parse actions in both time and space, which is also the key to the credibility and interpretability of the AQA technique. Based on this insight, we propose a new fine-grained spatial-temporal action parser named \textbf{FineParser}. It learns human-centric foreground action representations by focusing on target action regions within each frame and exploiting their fine-grained alignments in time and space to minimize the impact of invalid backgrounds during the assessment. In addition, we construct fine-grained annotations of human-centric foreground action masks for the FineDiving dataset, called \textbf{FineDiving-HM}. With refined annotations on diverse target action procedures, FineDiving-HM can promote the development of real-world AQA systems. Through extensive experiments, we demonstrate the effectiveness of FineParser, which outperforms state-of-the-art methods while supporting more tasks of fine-grained action understanding. Data and code are available at \url{https://github.com/PKU-ICST-MIPL/FineParser_CVPR2024}.
Related papers
- FinePseudo: Improving Pseudo-Labelling through Temporal-Alignablity for Semi-Supervised Fine-Grained Action Recognition [57.17966905865054]
Real-life applications of action recognition often require a fine-grained understanding of subtle movements.
Existing semi-supervised action recognition has mainly focused on coarse-grained action recognition.
We propose an Alignability-Verification-based Metric learning technique to effectively discriminate between fine-grained action pairs.
arXiv Detail & Related papers (2024-09-02T20:08:06Z) - Open-Vocabulary Spatio-Temporal Action Detection [59.91046192096296]
Open-vocabulary-temporal action detection (OV-STAD) is an important fine-grained video understanding task.
OV-STAD requires training a model on a limited set of base classes with box and label supervision.
To better adapt the holistic VLM for the fine-grained action detection task, we carefully fine-tune it on the localized video region-text pairs.
arXiv Detail & Related papers (2024-05-17T14:52:47Z) - Action Sensitivity Learning for Temporal Action Localization [35.65086250175736]
We propose an Action Sensitivity Learning framework (ASL) to tackle the task of temporal action localization.
We first introduce a lightweight Action Sensitivity Evaluator to learn the action sensitivity at the class level and instance level, respectively.
Based on the action sensitivity of each frame, we design an Action Sensitive Contrastive Loss to enhance features, where the action-aware frames are sampled as positive pairs to push away the action-irrelevant frames.
arXiv Detail & Related papers (2023-05-25T04:19:14Z) - FineDiving: A Fine-grained Dataset for Procedure-aware Action Quality
Assessment [93.09267863425492]
We argue that understanding both high-level semantics and internal temporal structures of actions in competitive sports videos is the key to making predictions accurate and interpretable.
We construct a new fine-grained dataset, called FineDiving, developed on diverse diving events with detailed annotations on action procedures.
arXiv Detail & Related papers (2022-04-07T17:59:32Z) - Towards High-Quality Temporal Action Detection with Sparse Proposals [14.923321325749196]
Temporal Action Detection aims to localize the temporal segments containing human action instances and predict the action categories.
We introduce Sparse Proposals to interact with the hierarchical features.
Experiments demonstrate the effectiveness of our method, especially under high tIoU thresholds.
arXiv Detail & Related papers (2021-09-18T06:15:19Z) - Weakly Supervised Temporal Action Localization Through Learning Explicit
Subspaces for Action and Context [151.23835595907596]
Methods learn to localize temporal starts and ends of action instances in a video under only video-level supervision.
We introduce a framework that learns two feature subspaces respectively for actions and their context.
The proposed approach outperforms state-of-the-art WS-TAL methods on three benchmarks.
arXiv Detail & Related papers (2021-03-30T08:26:53Z) - Learning to Represent Action Values as a Hypergraph on the Action
Vertices [17.811355496708728]
Action-value estimation is a critical component of reinforcement learning (RL) methods.
We conjecture that leveraging the structure of multi-dimensional action spaces is a key ingredient for learning good representations of action.
We show the effectiveness of our approach on a myriad of domains: illustrative prediction problems under minimal confounding effects, Atari 2600 games, and discretised physical control benchmarks.
arXiv Detail & Related papers (2020-10-28T00:19:13Z) - Intra- and Inter-Action Understanding via Temporal Action Parsing [118.32912239230272]
We construct a new dataset developed on sport videos with manual annotations of sub-actions, and conduct a study on temporal action parsing on top.
Our study shows that a sport activity usually consists of multiple sub-actions and that the awareness of such temporal structures is beneficial to action recognition.
We also investigate a number of temporal parsing methods, and thereon devise an improved method that is capable of mining sub-actions from training data without knowing the labels of them.
arXiv Detail & Related papers (2020-05-20T17:45:18Z) - FineGym: A Hierarchical Video Dataset for Fine-grained Action
Understanding [118.32912239230272]
FineGym is a new action recognition dataset built on top of gymnastic videos.
It provides temporal annotations at both action and sub-action levels with a three-level semantic hierarchy.
This new level of granularity presents significant challenges for action recognition.
arXiv Detail & Related papers (2020-04-14T17:55:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.