ADLDA: A Method to Reduce the Harm of Data Distribution Shift in Data Augmentation
- URL: http://arxiv.org/abs/2405.06893v1
- Date: Sat, 11 May 2024 03:20:35 GMT
- Title: ADLDA: A Method to Reduce the Harm of Data Distribution Shift in Data Augmentation
- Authors: Haonan Wang,
- Abstract summary: This study introduces a novel data augmentation technique, ADLDA, aimed at mitigating the negative impact of data distribution shifts.
Experimental results demonstrate that ADLDA significantly enhances model performance across multiple datasets.
- Score: 11.887799310374174
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study introduces a novel data augmentation technique, ADLDA, aimed at mitigating the negative impact of data distribution shifts caused by the data augmentation process in computer vision task. ADLDA partitions augmented data into distinct subdomains and incorporates domain labels, combined with domain adaptation techniques, to optimize data representation in the model's feature space. Experimental results demonstrate that ADLDA significantly enhances model performance across multiple datasets, particularly in neural network architectures with complex feature extraction layers. Furthermore, ADLDA improves the model's ability to locate and recognize key features, showcasing potential in object recognition and image segmentation tasks. This paper's contribution provides an effective data augmentation regularization method for the field of computer vision aiding in the enhancement of robustness and accuracy in deep learning models.
Related papers
- A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
In computer vision, it is well-known that a lack of data diversity will impair model performance.
We propose a simple yet effective data augmentation approach by leveraging advancements in generative models.
Background augmentation, in particular, significantly improves the models' robustness and generalization capabilities.
arXiv Detail & Related papers (2024-08-01T07:40:00Z) - Adaptive Affinity-Based Generalization For MRI Imaging Segmentation Across Resource-Limited Settings [1.5703963908242198]
This paper introduces a novel relation-based knowledge framework by seamlessly combining adaptive affinity-based and kernel-based distillation.
To validate our innovative approach, we conducted experiments on publicly available multi-source prostate MRI data.
arXiv Detail & Related papers (2024-04-03T13:35:51Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
Current perceptive models heavily depend on resource-intensive datasets.
We introduce perception-aware loss (P.A. loss) through segmentation, improving both quality and controllability.
Our method customizes data augmentation by extracting and utilizing perception-aware attribute (P.A. Attr) during generation.
arXiv Detail & Related papers (2024-03-20T04:58:03Z) - Data-Centric Long-Tailed Image Recognition [49.90107582624604]
Long-tail models exhibit a strong demand for high-quality data.
Data-centric approaches aim to enhance both the quantity and quality of data to improve model performance.
There is currently a lack of research into the underlying mechanisms explaining the effectiveness of information augmentation.
arXiv Detail & Related papers (2023-11-03T06:34:37Z) - ArSDM: Colonoscopy Images Synthesis with Adaptive Refinement Semantic
Diffusion Models [69.9178140563928]
Colonoscopy analysis is essential for assisting clinical diagnosis and treatment.
The scarcity of annotated data limits the effectiveness and generalization of existing methods.
We propose an Adaptive Refinement Semantic Diffusion Model (ArSDM) to generate colonoscopy images that benefit the downstream tasks.
arXiv Detail & Related papers (2023-09-03T07:55:46Z) - Phased Data Augmentation for Training a Likelihood-Based Generative Model with Limited Data [0.0]
Generative models excel in creating realistic images, yet their dependency on extensive datasets for training presents significant challenges.
Current data-efficient methods largely focus on GAN architectures, leaving a gap in training other types of generative models.
"phased data augmentation" is a novel technique that addresses this gap by optimizing training in limited data scenarios without altering the inherent data distribution.
arXiv Detail & Related papers (2023-05-22T03:38:59Z) - Instance-Conditioned GAN Data Augmentation for Representation Learning [29.36473147430433]
We introduce DA_IC-GAN, a learnable data augmentation module that can be used off-the-shelf in conjunction with most state-of-the-art training recipes.
We show that DA_IC-GAN can boost accuracy to between 1%p and 2%p with the highest capacity models.
We additionally couple DA_IC-GAN with a self-supervised training recipe and show that we can also achieve an improvement of 1%p in accuracy in some settings.
arXiv Detail & Related papers (2023-03-16T22:45:43Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Negative Data Augmentation [127.28042046152954]
We show that negative data augmentation samples provide information on the support of the data distribution.
We introduce a new GAN training objective where we use NDA as an additional source of synthetic data for the discriminator.
Empirically, models trained with our method achieve improved conditional/unconditional image generation along with improved anomaly detection capabilities.
arXiv Detail & Related papers (2021-02-09T20:28:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.