論文の概要: Non-confusing Generation of Customized Concepts in Diffusion Models
- arxiv url: http://arxiv.org/abs/2405.06914v1
- Date: Sat, 11 May 2024 05:01:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 19:22:14.404381
- Title: Non-confusing Generation of Customized Concepts in Diffusion Models
- Title(参考訳): 拡散モデルにおけるカスタマイズ概念の非畳み込み生成
- Authors: Wang Lin, Jingyuan Chen, Jiaxin Shi, Yichen Zhu, Chen Liang, Junzhong Miao, Tao Jin, Zhou Zhao, Fei Wu, Shuicheng Yan, Hanwang Zhang,
- Abstract要約: テキスト誘導拡散モデル(TGDM)を用いた合成概念生成における概念間視覚混乱の共通課題に取り組む。
既存のカスタマイズされた生成方法は、第2ステージの微調整のみに焦点を当て、第1ステージを見下ろしている。
本稿では,CLIF(CLIF)と呼ばれる単純かつ効果的な画像言語微調整法を提案する。
- 参考スコア(独自算出の注目度): 135.4385383284657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We tackle the common challenge of inter-concept visual confusion in compositional concept generation using text-guided diffusion models (TGDMs). It becomes even more pronounced in the generation of customized concepts, due to the scarcity of user-provided concept visual examples. By revisiting the two major stages leading to the success of TGDMs -- 1) contrastive image-language pre-training (CLIP) for text encoder that encodes visual semantics, and 2) training TGDM that decodes the textual embeddings into pixels -- we point that existing customized generation methods only focus on fine-tuning the second stage while overlooking the first one. To this end, we propose a simple yet effective solution called CLIF: contrastive image-language fine-tuning. Specifically, given a few samples of customized concepts, we obtain non-confusing textual embeddings of a concept by fine-tuning CLIP via contrasting a concept and the over-segmented visual regions of other concepts. Experimental results demonstrate the effectiveness of CLIF in preventing the confusion of multi-customized concept generation.
- Abstract(参考訳): テキスト誘導拡散モデル(TGDM)を用いた合成概念生成における概念間視覚的混乱の一般的な課題に取り組む。
ユーザが提供する概念の視覚的な例が不足しているため、カスタマイズされた概念の生成において、さらに顕著になる。
TGDMの成功につながる2つの主要な段階を再考することで、
1)視覚的意味論を符号化するテキストエンコーダのためのコントラスト画像言語事前学習(CLIP)
2) テキストの埋め込みをピクセルにデコードするTGDMのトレーニング -- 既存のカスタマイズされた生成メソッドは第2ステージの微調整にのみフォーカスし、第1ステージを見下ろしている点を指摘する。
この目的のために,CLIFと呼ばれる単純かつ効果的な画像言語微調整法を提案する。
具体的には、いくつかのカスタマイズされた概念のサンプルから、概念と他の概念の過剰な視覚領域を対比することにより、CLIPを微調整することで、概念の非統合的なテキスト埋め込みを得る。
実験結果から,CLIFの多角化概念生成の混乱防止効果が示された。
関連論文リスト
- AttenCraft: Attention-guided Disentanglement of Multiple Concepts for Text-to-Image Customization [4.544788024283586]
AttenCraft(アテンクラフト)は、複数のコンセプトの絡み合わせのための注意誘導方式である。
異なる概念からの特徴獲得の非同期性を緩和するために,一様サンプリングと再加重サンプリング方式を導入する。
本手法は,画像アライメントの観点からベースラインモデルより優れており,テキストアライメントに適合して動作する。
論文 参考訳(メタデータ) (2024-05-28T08:50:14Z) - FreeCustom: Tuning-Free Customized Image Generation for Multi-Concept Composition [49.2208591663092]
FreeCustomは、参照概念に基づいたマルチコンセプト構成のカスタマイズされた画像を生成するためのチューニング不要な方法である。
本稿では,MRSA(Multi-Reference Self-attention)機構と重み付きマスク戦略を導入する。
提案手法は,マルチコンセプト構成やシングルコンセプトのカスタマイズの観点から,他のトレーニングベース手法と同等あるいは同等に機能する。
論文 参考訳(メタデータ) (2024-05-22T17:53:38Z) - Textual Localization: Decomposing Multi-concept Images for
Subject-Driven Text-to-Image Generation [5.107886283951882]
マルチコンセプト入力画像を扱うための局所化テキスト・ツー・イメージモデルを提案する。
提案手法は,複数概念を分解するための新しいクロスアテンションガイダンスを組み込んだものである。
特に,本手法は,生成した画像の目標概念と整合した横断アテンションマップを生成する。
論文 参考訳(メタデータ) (2024-02-15T14:19:42Z) - Multi-Concept T2I-Zero: Tweaking Only The Text Embeddings and Nothing
Else [75.6806649860538]
我々は,事前学習した拡散モデルを用いた自然多概念生成という,より野心的な目標を考える。
マルチコンセプト生成性能を著しく低下させる概念支配と非局所的貢献を観察する。
我々は、より現実的なマルチコンセプトのテキスト・ツー・イメージ生成のために、テキストの埋め込みを微調整することで、上記の問題を克服する最小の低コストのソリューションを設計する。
論文 参考訳(メタデータ) (2023-10-11T12:05:44Z) - Domain-Agnostic Tuning-Encoder for Fast Personalization of Text-To-Image
Models [59.094601993993535]
テキスト・ツー・イメージ(T2I)のパーソナライズにより、ユーザーは自然言語のプロンプトに自身の視覚的概念を組み合わせることができる。
既存のエンコーダのほとんどは単一クラスドメインに限定されており、多様な概念を扱う能力を妨げる。
個人化された概念に関する特別なデータセットや事前情報を必要としないドメインに依存しない手法を提案する。
論文 参考訳(メタデータ) (2023-07-13T17:46:42Z) - Break-A-Scene: Extracting Multiple Concepts from a Single Image [80.47666266017207]
テキストシーン分解の課題を紹介する。
本稿では,対象概念の存在を示すマスクを用いた入力画像の拡張を提案する。
次に、新しい2段階のカスタマイズプロセスを示す。
論文 参考訳(メタデータ) (2023-05-25T17:59:04Z) - Toward a Visual Concept Vocabulary for GAN Latent Space [74.12447538049537]
本稿では,GANの潜在空間で表現される原始視覚概念のオープンエンド語彙を構築するための新しい手法を提案する。
提案手法は, 層選択性に基づく知覚的正当方向の自動識別, 自由形, 構成的自然言語記述による人為的アノテーションの3つの要素から構成される。
実験により、我々のアプローチで学んだ概念は信頼性があり、構成可能であることが示され、クラス、コンテキスト、オブザーバをまたいで一般化される。
論文 参考訳(メタデータ) (2021-10-08T17:58:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。