Automating Creativity
- URL: http://arxiv.org/abs/2405.06915v1
- Date: Sat, 11 May 2024 05:05:10 GMT
- Title: Automating Creativity
- Authors: Ming-Hui Huang, Roland T. Rust,
- Abstract summary: This paper explores what is required to evolve AI from generative to creative.
We develop a triple prompt-response-reward engineering framework to develop the creative capability of GenAI.
- Score: 1.0200170217746136
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI (GenAI) has spurred the expectation of being creative, due to its ability to generate content, yet so far, its creativity has somewhat disappointed, because it is trained using existing data following human intentions to generate outputs. The purpose of this paper is to explore what is required to evolve AI from generative to creative. Based on a reinforcement learning approach and building upon various research streams of computational creativity, we develop a triple prompt-response-reward engineering framework to develop the creative capability of GenAI. This framework consists of three components: 1) a prompt model for expected creativity by developing discriminative prompts that are objectively, individually, or socially novel, 2) a response model for observed creativity by generating surprising outputs that are incrementally, disruptively, or radically innovative, and 3) a reward model for improving creativity over time by incorporating feedback from the AI, the creator/manager, and/or the customers. This framework enables the application of GenAI for various levels of creativity strategically.
Related papers
- Creativity in AI: Progresses and Challenges [17.03526787878041]
We study the creative capabilities of AI systems, focusing on creative problem-solving, linguistic, artistic, and scientific creativity.
Our review suggests that while the latest AI models are largely capable of producing linguistically and artistically creative outputs, they struggle with tasks that require creative problem-solving.
We highlight the need for a comprehensive evaluation of creativity that is process-driven and considers several dimensions of creativity.
arXiv Detail & Related papers (2024-10-22T17:43:39Z) - Initial Development and Evaluation of the Creative Artificial Intelligence through Recurring Developments and Determinations (CAIRDD) System [0.0]
Large language models (LLMs) provide a facsimile of creativity and the appearance of sentience, while not actually being either creative or sentient.
This paper proposes a technique for enhancing LLM output creativity via an iterative process of concept injection and refinement.
arXiv Detail & Related papers (2024-09-03T21:04:07Z) - On the stochastics of human and artificial creativity [0.0]
We argue that achieving human-level intelligence in computers requires also human-level creativity.
We develop a statistical representation of human creativity, incorporating prior insights from theory, psychology, philosophy, neuroscience, and chaos theory.
Our analysis includes modern AI algorithms such as reinforcement learning, diffusion models, and large language models, addressing to what extent they measure up to human level creativity.
arXiv Detail & Related papers (2024-03-03T10:38:57Z) - Can AI Be as Creative as Humans? [84.43873277557852]
We prove in theory that AI can be as creative as humans under the condition that it can properly fit the data generated by human creators.
The debate on AI's creativity is reduced into the question of its ability to fit a sufficient amount of data.
arXiv Detail & Related papers (2024-01-03T08:49:12Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
Training large transformers using next-token prediction has given rise to groundbreaking advancements in AI.
While this generative AI approach has produced impressive results, it heavily leans on human supervision.
This strong reliance on human oversight poses a significant hurdle to the advancement of AI innovation.
We propose a novel paradigm termed Exploratory AI (EAI) aimed at autonomously generating high-quality training data.
arXiv Detail & Related papers (2023-10-13T07:03:39Z) - Designing Participatory AI: Creative Professionals' Worries and
Expectations about Generative AI [8.379286663107845]
Generative AI, i.e., the group of technologies that automatically generate visual or written content based on text prompts, has undergone a leap in complexity and become widely available within just a few years.
This paper presents the results of a qualitative survey investigating how creative professionals think about generative AI.
arXiv Detail & Related papers (2023-03-15T20:57:03Z) - A Comprehensive Survey of AI-Generated Content (AIGC): A History of
Generative AI from GAN to ChatGPT [63.58711128819828]
ChatGPT and other Generative AI (GAI) techniques belong to the category of Artificial Intelligence Generated Content (AIGC)
The goal of AIGC is to make the content creation process more efficient and accessible, allowing for the production of high-quality content at a faster pace.
arXiv Detail & Related papers (2023-03-07T20:36:13Z) - Towards Creativity Characterization of Generative Models via Group-based
Subset Scanning [64.6217849133164]
We propose group-based subset scanning to identify, quantify, and characterize creative processes.
We find that creative samples generate larger subsets of anomalies than normal or non-creative samples across datasets.
arXiv Detail & Related papers (2022-03-01T15:07:14Z) - Telling Creative Stories Using Generative Visual Aids [52.623545341588304]
We asked writers to write creative stories from a starting prompt, and provided them with visuals created by generative AI models from the same prompt.
Compared to a control group, writers who used the visuals as story writing aid wrote significantly more creative, original, complete and visualizable stories.
Findings indicate that cross modality inputs by AI can benefit divergent aspects of creativity in human-AI co-creation, but hinders convergent thinking.
arXiv Detail & Related papers (2021-10-27T23:13:47Z) - Towards creativity characterization of generative models via group-based
subset scanning [51.84144826134919]
We propose group-based subset scanning to quantify, detect, and characterize creative processes.
Creative samples generate larger subsets of anomalies than normal or non-creative samples across datasets.
arXiv Detail & Related papers (2021-04-01T14:07:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.