RoTHP: Rotary Position Embedding-based Transformer Hawkes Process
- URL: http://arxiv.org/abs/2405.06985v1
- Date: Sat, 11 May 2024 10:59:09 GMT
- Title: RoTHP: Rotary Position Embedding-based Transformer Hawkes Process
- Authors: Anningzhe Gao, Shan Dai,
- Abstract summary: Temporal Point Processes (TPPs) are commonly used for modeling asynchronous event sequences data.
We propose a new Rotary Position Embedding-based THP architecture in this paper.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Temporal Point Processes (TPPs), especially Hawkes Process are commonly used for modeling asynchronous event sequences data such as financial transactions and user behaviors in social networks. Due to the strong fitting ability of neural networks, various neural Temporal Point Processes are proposed, among which the Neural Hawkes Processes based on self-attention such as Transformer Hawkes Process (THP) achieve distinct performance improvement. Although the THP has gained increasing studies, it still suffers from the {sequence prediction issue}, i.e., training on history sequences and inferencing about the future, which is a prevalent paradigm in realistic sequence analysis tasks. What's more, conventional THP and its variants simply adopt initial sinusoid embedding in transformers, which shows performance sensitivity to temporal change or noise in sequence data analysis by our empirical study. To deal with the problems, we propose a new Rotary Position Embedding-based THP (RoTHP) architecture in this paper. Notably, we show the translation invariance property and {sequence prediction flexibility} of our RoTHP induced by the {relative time embeddings} when coupled with Hawkes process theoretically. Furthermore, we demonstrate empirically that our RoTHP can be better generalized in sequence data scenarios with timestamp translations and in sequence prediction tasks.
Related papers
- Non-asymptotic Convergence of Training Transformers for Next-token Prediction [48.9399496805422]
Transformers have achieved extraordinary success in modern machine learning due to their excellent ability to handle sequential data.
This paper provides a fine-grained non-asymptotic analysis of the training dynamics of a one-layer transformer.
We show that the trained transformer presents non-token prediction ability with dataset shift.
arXiv Detail & Related papers (2024-09-25T20:22:06Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Self-attention mechanism in Transformer architecture requires positional embeddings to encode temporal order in time series prediction.
We argue that this reliance on positional embeddings restricts the Transformer's ability to effectively represent temporal sequences.
We present a model integrating PRE with a standard Transformer encoder, demonstrating state-of-the-art performance on various real-world datasets.
arXiv Detail & Related papers (2024-08-20T01:56:07Z) - State Sequences Prediction via Fourier Transform for Representation
Learning [111.82376793413746]
We propose State Sequences Prediction via Fourier Transform (SPF), a novel method for learning expressive representations efficiently.
We theoretically analyze the existence of structural information in state sequences, which is closely related to policy performance and signal regularity.
Experiments demonstrate that the proposed method outperforms several state-of-the-art algorithms in terms of both sample efficiency and performance.
arXiv Detail & Related papers (2023-10-24T14:47:02Z) - Temporal Attention Augmented Transformer Hawkes Process [4.624987488467739]
We come up with a new kind of Transformer-based Hawkes process model, Temporal Attention Augmented Transformer Hawkes Process (TAA-THP)
We modify the traditional dot-product attention structure, and introduce the temporal encoding into attention structure.
We conduct numerous experiments on a wide range of synthetic and real-life datasets to validate the performance of our proposed TAA-THP model.
arXiv Detail & Related papers (2021-12-29T09:45:23Z) - Transformers predicting the future. Applying attention in next-frame and
time series forecasting [0.0]
Recurrent Neural Networks were, until recently, one of the best ways to capture the timely dependencies in sequences.
With the introduction of the Transformer, it has been proven that an architecture with only attention-mechanisms without any RNN can improve on the results in various sequence processing tasks.
arXiv Detail & Related papers (2021-08-18T16:17:29Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - Meta-Learning Stationary Stochastic Process Prediction with
Convolutional Neural Processes [32.02612871707347]
We propose ConvNP, which endows Neural Processes (NPs) with translation equivariance and extends convolutional conditional NPs to allow for dependencies in the predictive distribution.
We demonstrate the strong performance and generalization capabilities of ConvNPs on 1D, regression image completion, and various tasks with real-world-temporal data.
arXiv Detail & Related papers (2020-07-02T18:25:27Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
We propose an artificial neural network with a mechanism to implicitly learn the phase spaces properties.
Our approach is either as competitive as or better than most state-of-the-art strategies.
arXiv Detail & Related papers (2020-06-19T21:04:47Z) - Modeling of Spatio-Temporal Hawkes Processes with Randomized Kernels [15.556686221927501]
Inferring the dynamics of event processes hasly practical applications including crime prediction, and traffic forecasting.
We introduce on social-temporal Hawkes processes that are commonly used due to their capability to capture excitations between event occurrences.
We replace the spatial kernel calculations by randomized transformations and gradient descent to learn the process.
arXiv Detail & Related papers (2020-03-07T22:21:06Z) - Transformer Hawkes Process [79.16290557505211]
We propose a Transformer Hawkes Process (THP) model, which leverages the self-attention mechanism to capture long-term dependencies.
THP outperforms existing models in terms of both likelihood and event prediction accuracy by a notable margin.
We provide a concrete example, where THP achieves improved prediction performance for learning multiple point processes when incorporating their relational information.
arXiv Detail & Related papers (2020-02-21T13:48:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.