SEAFL: Enhancing Efficiency in Semi-Asynchronous Federated Learning through Adaptive Aggregation and Selective Training
- URL: http://arxiv.org/abs/2503.05755v1
- Date: Sat, 22 Feb 2025 05:13:53 GMT
- Title: SEAFL: Enhancing Efficiency in Semi-Asynchronous Federated Learning through Adaptive Aggregation and Selective Training
- Authors: Md Sirajul Islam, Sanjeev Panta, Fei Xu, Xu Yuan, Li Chen, Nian-Feng Tzeng,
- Abstract summary: We present em SEAFL, a novel FL framework designed to mitigate both the straggler and the stale model challenges in semi-asynchronous FL.<n>em SEAFL dynamically assigns weights to uploaded models during aggregation based on their staleness and importance to the current global model.<n>We evaluate the effectiveness of em SEAFL through extensive experiments on three benchmark datasets.
- Score: 26.478852701376294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a promising distributed machine learning framework that allows collaborative learning of a global model across decentralized devices without uploading their local data. However, in real-world FL scenarios, the conventional synchronous FL mechanism suffers from inefficient training caused by slow-speed devices, commonly known as stragglers, especially in heterogeneous communication environments. Though asynchronous FL effectively tackles the efficiency challenge, it induces substantial system overheads and model degradation. Striking for a balance, semi-asynchronous FL has gained increasing attention, while still suffering from the open challenge of stale models, where newly arrived updates are calculated based on outdated weights that easily hurt the convergence of the global model. In this paper, we present {\em SEAFL}, a novel FL framework designed to mitigate both the straggler and the stale model challenges in semi-asynchronous FL. {\em SEAFL} dynamically assigns weights to uploaded models during aggregation based on their staleness and importance to the current global model. We theoretically analyze the convergence rate of {\em SEAFL} and further enhance the training efficiency with an extended variant that allows partial training on slower devices, enabling them to contribute to global aggregation while reducing excessive waiting times. We evaluate the effectiveness of {\em SEAFL} through extensive experiments on three benchmark datasets. The experimental results demonstrate that {\em SEAFL} outperforms its closest counterpart by up to $\sim$22\% in terms of the wall-clock training time required to achieve target accuracy.
Related papers
- Robust Model Aggregation for Heterogeneous Federated Learning: Analysis and Optimizations [35.58487905412915]
We propose a time-driven SFL (T-SFL) framework for heterogeneous systems.
To evaluate the learning performance of T-SFL, we provide an upper bound on the global loss function.
We develop a discriminative model selection algorithm that removes local models from clients whose number of iterations falls below a predetermined threshold.
arXiv Detail & Related papers (2024-05-11T11:55:26Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
Synchronous federated learning (FL) is a popular paradigm for collaborative edge learning.
As some of the devices may have limited computational resources and varying availability, FL latency is highly sensitive to stragglers.
We propose straggler-aware layer-wise federated learning (SALF) that leverages the optimization procedure of NNs via backpropagation to update the global model in a layer-wise fashion.
arXiv Detail & Related papers (2024-03-27T09:14:36Z) - AEDFL: Efficient Asynchronous Decentralized Federated Learning with
Heterogeneous Devices [61.66943750584406]
We propose an Asynchronous Efficient Decentralized FL framework, i.e., AEDFL, in heterogeneous environments.
First, we propose an asynchronous FL system model with an efficient model aggregation method for improving the FL convergence.
Second, we propose a dynamic staleness-aware model update approach to achieve superior accuracy.
Third, we propose an adaptive sparse training method to reduce communication and computation costs without significant accuracy degradation.
arXiv Detail & Related papers (2023-12-18T05:18:17Z) - Take History as a Mirror in Heterogeneous Federated Learning [9.187993085263209]
Federated Learning (FL) allows several clients to cooperatively train machine learning models without disclosing the raw data.
In this work, we propose a novel asynchronous FL framework called Federated Historical Learning (FedHist)
FedHist effectively addresses the challenges posed by both Non-IID data and gradient staleness.
arXiv Detail & Related papers (2023-12-16T11:40:49Z) - Adaptive Model Pruning and Personalization for Federated Learning over
Wireless Networks [72.59891661768177]
Federated learning (FL) enables distributed learning across edge devices while protecting data privacy.
We consider a FL framework with partial model pruning and personalization to overcome these challenges.
This framework splits the learning model into a global part with model pruning shared with all devices to learn data representations and a personalized part to be fine-tuned for a specific device.
arXiv Detail & Related papers (2023-09-04T21:10:45Z) - Semi-Asynchronous Federated Edge Learning Mechanism via Over-the-air
Computation [4.598679151181452]
We propose a semi-asynchronous aggregation FEEL mechanism with AirComp scheme (PAOTA) to improve the training efficiency of the FEEL system.
Our proposed algorithm achieves convergence performance close to that of the ideal Local SGD.
arXiv Detail & Related papers (2023-05-06T15:06:03Z) - TimelyFL: Heterogeneity-aware Asynchronous Federated Learning with
Adaptive Partial Training [17.84692242938424]
TimelyFL is a heterogeneous-aware asynchronous Federated Learning framework with adaptive partial training.
We show that TimelyFL improves participation rate by 21.13%, harvests 1.28x - 2.89x more efficiency on convergence rate, and provides a 6.25% increment on test accuracy.
arXiv Detail & Related papers (2023-04-14T06:26:08Z) - Delay-Aware Hierarchical Federated Learning [7.292078085289465]
The paper introduces delay-aware hierarchical federated learning (DFL) to improve the efficiency of distributed machine learning (ML) model training.
During global synchronization, the cloud server consolidates local models with an outdated global model using a convex control algorithm.
Numerical evaluations show DFL's superior performance in terms of faster global model, reduced convergence resource, and evaluations against communication delays.
arXiv Detail & Related papers (2023-03-22T09:23:29Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
We investigate real-time machine learning in a federated edge intelligence (FEI) system.
FEI systems exhibit heterogenous communication and computational resource distribution.
We propose a time-sensitive federated learning (TS-FL) framework to minimize the overall run-time for collaboratively training a shared ML model.
arXiv Detail & Related papers (2023-01-26T08:13:22Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
arXiv Detail & Related papers (2023-01-25T03:18:10Z) - Device Scheduling and Update Aggregation Policies for Asynchronous
Federated Learning [72.78668894576515]
Federated Learning (FL) is a newly emerged decentralized machine learning (ML) framework.
We propose an asynchronous FL framework with periodic aggregation to eliminate the straggler issue in FL systems.
arXiv Detail & Related papers (2021-07-23T18:57:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.