論文の概要: Incorporating Degradation Estimation in Light Field Spatial Super-Resolution
- arxiv url: http://arxiv.org/abs/2405.07012v1
- Date: Sat, 11 May 2024 13:14:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 18:57:41.822478
- Title: Incorporating Degradation Estimation in Light Field Spatial Super-Resolution
- Title(参考訳): 光電場空間超解像における劣化推定の組み入れ
- Authors: Zeyu Xiao, Zhiwei Xiong,
- Abstract要約: 本稿では,多種多様な劣化型を扱うために,明示的な劣化推定を組み込んだ効果的なブラインド光場SR法LF-DESTを提案する。
ベンチマークデータセットに対する広範な実験を行い、光場SRにおける様々な劣化シナリオにおいてLF-DESTが優れた性能を発揮することを示した。
- 参考スコア(独自算出の注目度): 54.603510192725786
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advancements in light field super-resolution (SR) have yielded impressive results. In practice, however, many existing methods are limited by assuming fixed degradation models, such as bicubic downsampling, which hinders their robustness in real-world scenarios with complex degradations. To address this limitation, we present LF-DEST, an effective blind Light Field SR method that incorporates explicit Degradation Estimation to handle various degradation types. LF-DEST consists of two primary components: degradation estimation and light field restoration. The former concurrently estimates blur kernels and noise maps from low-resolution degraded light fields, while the latter generates super-resolved light fields based on the estimated degradations. Notably, we introduce a modulated and selective fusion module that intelligently combines degradation representations with image information, allowing for effective handling of diverse degradation types. We conduct extensive experiments on benchmark datasets, demonstrating that LF-DEST achieves superior performance across a variety of degradation scenarios in light field SR.
- Abstract(参考訳): 光電場超解像(SR)の最近の進歩は印象的な結果をもたらした。
しかし、実際には、多くの既存手法は、複雑な劣化を伴う現実のシナリオにおいて、その堅牢性を阻害するバイコビックダウンサンプリングのような、固定された劣化モデルを仮定することで制限されている。
この制限に対処するため,さまざまな劣化型を扱うために,明示的な劣化推定を組み込んだ効果的なブラインド光場SR法LF-DESTを提案する。
LF-DESTは、劣化推定と光場復元の2つの主成分から構成される。
前者は低分解能劣化光場からボケ核とノイズマップを同時に推定し、後者は推定劣化に基づいて超解光場を生成する。
特に, 画像情報と分解表現をインテリジェントに組み合わせ, 多様な劣化型を効果的に扱えるような, 変調および選択的融合モジュールを導入する。
ベンチマークデータセットに対する広範な実験を行い、光場SRにおける様々な劣化シナリオにおいてLF-DESTが優れた性能を発揮することを示した。
関連論文リスト
- AGLLDiff: Guiding Diffusion Models Towards Unsupervised Training-free Real-world Low-light Image Enhancement [37.274077278901494]
本稿では,AGLLDiff (Atribute Guidance Diffusion framework) を提案する。
AGLLDiffはパラダイムをシフトし、通常光画像の露出、構造、色などの望ましい属性をモデル化する。
我々の手法は、歪みベースのメトリクスと知覚ベースのメトリクスの点で、現在の非教師なしのLIEメソッドよりも優れています。
論文 参考訳(メタデータ) (2024-07-20T15:17:48Z) - Physics-Inspired Degradation Models for Hyperspectral Image Fusion [61.743696362028246]
ほとんどの融合法は、融合アルゴリズム自体にのみ焦点をあて、分解モデルを見落としている。
我々は、LR-HSIとHR-MSIの劣化をモデル化するための物理インスパイアされた劣化モデル(PIDM)を提案する。
提案したPIDMは,既存の核融合法における核融合性能を向上させることができる。
論文 参考訳(メタデータ) (2024-02-04T09:07:28Z) - Efficient Test-Time Adaptation for Super-Resolution with Second-Order
Degradation and Reconstruction [62.955327005837475]
画像超解像(SR)は,低分解能(LR)から高分解能(HR)へのマッピングを,一対のHR-LRトレーニング画像を用いて学習することを目的としている。
SRTTAと呼ばれるSRの効率的なテスト時間適応フレームワークを提案し、SRモデルを異なる/未知の劣化型でテストドメインに迅速に適応させることができる。
論文 参考訳(メタデータ) (2023-10-29T13:58:57Z) - Enhancing Low-light Light Field Images with A Deep Compensation Unfolding Network [52.77569396659629]
本稿では,低光環境下で撮像した光場(LF)画像の復元に,DCUNet(Deep compensation network openfolding)を提案する。
このフレームワークは、中間拡張結果を使用して照明マップを推定し、展開プロセスで新しい拡張結果を生成する。
本稿では,LF画像の特徴を適切に活用するために,擬似明示的特徴相互作用モジュールを提案する。
論文 参考訳(メタデータ) (2023-08-10T07:53:06Z) - Toward Real-World Light Field Super-Resolution [39.90540075718412]
我々は,Lytro ILLUMカメラを用いて,室内および屋外の様々なシーンの低解像度と高解像度の2つの光場をキャプチャした,世界初の実世界の光場SRデータセットLytroZoomを紹介する。
また,Omni-Frequency Projection Network (OFPNet)を提案する。
実験によると、LytroZoomでトレーニングされたモデルは、合成データセットでトレーニングされたモデルよりも優れており、多様なコンテンツやデバイスに一般化可能である。
論文 参考訳(メタデータ) (2023-05-30T12:46:50Z) - Blind Super-Resolution for Remote Sensing Images via Conditional
Stochastic Normalizing Flows [14.882417028542855]
本稿では、上記の問題に対処するために、正規化フロー(BlindSRSNF)に基づく新しいブラインドSRフレームワークを提案する。
BlindSRSNFは、低解像度(LR)画像が与えられた高解像度画像空間上の条件確率分布を、確率の変動境界を明示的に最適化することによって学習する。
提案アルゴリズムは,シミュレーションLRと実世界RSIの両方において,視覚的品質の優れたSR結果が得られることを示す。
論文 参考訳(メタデータ) (2022-10-14T12:37:32Z) - Learning Generalizable Latent Representations for Novel Degradations in
Super Resolution [29.706191592443027]
本稿では,手工芸品(ベース)の劣化から新しい劣化まで一般化可能な劣化の潜在表現空間を学習することを提案する。
そして、この潜伏空間における新規な劣化の表現を利用して、新規な劣化と整合した劣化画像を生成する。
我々は,新しい劣化を伴う視覚超解像法の有効性と利点を検証するために,合成データセットと実世界のデータセットの両方について広範な実験を行った。
論文 参考訳(メタデータ) (2022-07-25T16:22:30Z) - Real-World Light Field Image Super-Resolution via Degradation Modulation [59.68036846233918]
本稿では,実世界のLF画像 SR の簡易かつ効果的な手法を提案する。
実際のLF画像の劣化過程を定式化するために,実用的なLF劣化モデルを開発した。
畳み込みニューラルネットワークは、SRプロセスの前に分解を組み込むように設計されている。
論文 参考訳(メタデータ) (2022-06-13T14:44:46Z) - Light Field Spatial Super-resolution via Deep Combinatorial Geometry
Embedding and Structural Consistency Regularization [99.96632216070718]
ハンドヘルドデバイスが取得した光フィールド(LF)画像は通常、空間分解能の低下に悩まされる。
LF画像の高次元空間特性と複雑な幾何学構造は、従来の単一像SRよりも問題をより困難にしている。
本稿では,LF画像の各ビューを個別に超解答する新しい学習ベースLFフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-05T14:39:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。