A Performance Analysis Modeling Framework for Extended Reality Applications in Edge-Assisted Wireless Networks
- URL: http://arxiv.org/abs/2405.07033v1
- Date: Sat, 11 May 2024 15:16:12 GMT
- Title: A Performance Analysis Modeling Framework for Extended Reality Applications in Edge-Assisted Wireless Networks
- Authors: Anik Mallik, Jiang Xie, Zhu Han,
- Abstract summary: Extended reality (XR) is at the center of attraction in the research community due to the emergence of augmented, mixed, and virtual reality applications.
A comprehensive performance analysis model is required to assess the effectiveness of an XR application.
We propose a novel modeling framework for performance analysis of XR applications considering edge-assisted wireless networks.
- Score: 22.191639532017724
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Extended reality (XR) is at the center of attraction in the research community due to the emergence of augmented, mixed, and virtual reality applications. The performance of such applications needs to be uptight to maintain the requirements of latency, energy consumption, and freshness of data. Therefore, a comprehensive performance analysis model is required to assess the effectiveness of an XR application but is challenging to design due to the dependence of the performance metrics on several difficult-to-model parameters, such as computing resources and hardware utilization of XR and edge devices, which are controlled by both their operating systems and the application itself. Moreover, the heterogeneity in devices and wireless access networks brings additional challenges in modeling. In this paper, we propose a novel modeling framework for performance analysis of XR applications considering edge-assisted wireless networks and validate the model with experimental data collected from testbeds designed specifically for XR applications. In addition, we present the challenges associated with performance analysis modeling and present methods to overcome them in detail. Finally, the performance evaluation shows that the proposed analytical model can analyze XR applications' performance with high accuracy compared to the state-of-the-art analytical models.
Related papers
- ZeroLM: Data-Free Transformer Architecture Search for Language Models [54.83882149157548]
Current automated proxy discovery approaches suffer from extended search times, susceptibility to data overfitting, and structural complexity.
This paper introduces a novel zero-cost proxy methodology that quantifies model capacity through efficient weight statistics.
Our evaluation demonstrates the superiority of this approach, achieving a Spearman's rho of 0.76 and Kendall's tau of 0.53 on the FlexiBERT benchmark.
arXiv Detail & Related papers (2025-03-24T13:11:22Z) - Optimizing Sequential Recommendation Models with Scaling Laws and Approximate Entropy [104.48511402784763]
Performance Law for SR models aims to theoretically investigate and model the relationship between model performance and data quality.
We propose Approximate Entropy (ApEn) to assess data quality, presenting a more nuanced approach compared to traditional data quantity metrics.
arXiv Detail & Related papers (2024-11-30T10:56:30Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Benchmarking Deep Learning Models on NVIDIA Jetson Nano for Real-Time Systems: An Empirical Investigation [2.3636539018632616]
This work empirically investigates the optimization of complex deep learning models to analyze their functionality on an embedded device.
It evaluates the effectiveness of the optimized models in terms of their inference speed for image classification and video action detection.
arXiv Detail & Related papers (2024-06-25T17:34:52Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - REX: Rapid Exploration and eXploitation for AI Agents [103.68453326880456]
We propose an enhanced approach for Rapid Exploration and eXploitation for AI Agents called REX.
REX introduces an additional layer of rewards and integrates concepts similar to Upper Confidence Bound (UCB) scores, leading to more robust and efficient AI agent performance.
arXiv Detail & Related papers (2023-07-18T04:26:33Z) - A Neuromorphic Architecture for Reinforcement Learning from Real-Valued
Observations [0.34410212782758043]
Reinforcement Learning (RL) provides a powerful framework for decision-making in complex environments.
This paper presents a novel Spiking Neural Network (SNN) architecture for solving RL problems with real-valued observations.
arXiv Detail & Related papers (2023-07-06T12:33:34Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
Investigation focuses on the models' ability to handle a range of perturbations, such as sensor faults and noise.
We test the generalization and transfer learning capabilities of these models by exposing them to out-of-distribution (OOD) samples.
arXiv Detail & Related papers (2023-06-13T12:43:59Z) - Learning a model is paramount for sample efficiency in reinforcement
learning control of PDEs [5.488334211013093]
We show that learning an actuated model in parallel to training the RL agent significantly reduces the total amount of required data sampled from the real system.
We also show that iteratively updating the model is of major importance to avoid biases in the RL training.
arXiv Detail & Related papers (2023-02-14T16:14:39Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
This review aims at providing a comprehensive vision of the main state-of-the-art libraries and frameworks for machine learning and data analytics available today.
The main simulation, emulation, deployment systems, and testbeds for experimental research on the Edge-to-Cloud Continuum available today are also surveyed.
arXiv Detail & Related papers (2022-04-29T08:06:05Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.