論文の概要: Semantic Guided Large Scale Factor Remote Sensing Image Super-resolution with Generative Diffusion Prior
- arxiv url: http://arxiv.org/abs/2405.07044v1
- Date: Sat, 11 May 2024 16:06:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 18:47:31.247817
- Title: Semantic Guided Large Scale Factor Remote Sensing Image Super-resolution with Generative Diffusion Prior
- Title(参考訳): 生成拡散を先行した意味誘導型大規模因子リモートセンシング画像超解像
- Authors: Ce Wang, Wanjie Sun,
- Abstract要約: 大規模因子超解像(SR)アルゴリズムは、軌道から取得した低解像度(LR)衛星データの最大化に不可欠である。
既存の手法では、鮮明なテクスチャと正しい接地オブジェクトでSR画像を復元する際の課題に直面している。
本稿では,大規模リモートセンシング画像の超解像を実現するための新しいフレームワークであるセマンティックガイド拡散モデル(SGDM)を提案する。
- 参考スコア(独自算出の注目度): 13.148815217684277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote sensing images captured by different platforms exhibit significant disparities in spatial resolution. Large scale factor super-resolution (SR) algorithms are vital for maximizing the utilization of low-resolution (LR) satellite data captured from orbit. However, existing methods confront challenges in recovering SR images with clear textures and correct ground objects. We introduce a novel framework, the Semantic Guided Diffusion Model (SGDM), designed for large scale factor remote sensing image super-resolution. The framework exploits a pre-trained generative model as a prior to generate perceptually plausible SR images. We further enhance the reconstruction by incorporating vector maps, which carry structural and semantic cues. Moreover, pixel-level inconsistencies in paired remote sensing images, stemming from sensor-specific imaging characteristics, may hinder the convergence of the model and diversity in generated results. To address this problem, we propose to extract the sensor-specific imaging characteristics and model the distribution of them, allowing diverse SR images generation based on imaging characteristics provided by reference images or sampled from the imaging characteristic probability distributions. To validate and evaluate our approach, we create the Cross-Modal Super-Resolution Dataset (CMSRD). Qualitative and quantitative experiments on CMSRD showcase the superiority and broad applicability of our method. Experimental results on downstream vision tasks also demonstrate the utilitarian of the generated SR images. The dataset and code will be publicly available at https://github.com/wwangcece/SGDM
- Abstract(参考訳): 異なるプラットフォームで捉えたリモートセンシング画像は、空間分解能において大きな違いを示す。
大規模因子超解像(SR)アルゴリズムは、軌道から取得した低解像度(LR)衛星データの最大化に不可欠である。
しかし、既存の手法では、明瞭なテクスチャと正しい接地オブジェクトでSR画像を復元する際の課題に直面している。
本稿では,大規模リモートセンシング画像の超解像を実現するための新しいフレームワークであるセマンティックガイド拡散モデル(SGDM)を提案する。
このフレームワークは、事前訓練された生成モデルを利用して、知覚的に可視なSR画像を生成する。
我々は、構造的および意味的な手がかりを持つベクトルマップを組み込むことで、再構築をさらに強化する。
さらに、センサ固有の画像特性から生じるペアリングされたリモートセンシング画像の画素レベルの不整合は、モデル収束を阻害し、生成結果の多様性を損なう可能性がある。
この問題に対処するために,センサ固有の撮像特性を抽出し,その分布をモデル化し,参照画像や撮像特性分布からサンプリングした画像特性に基づいて多様なSR画像を生成することを提案する。
そこで我々はCMSRD(Cross-Modal Super-Resolution Dataset)を作成した。
CMSRDの定性的および定量的実験は,本手法の優位性と幅広い適用性を示した。
下流視覚タスクの実験結果も、生成したSR画像の実用性を示している。
データセットとコードはhttps://github.com/wwangcece/SGDMで公開されている。
関連論文リスト
- RS-Mamba for Large Remote Sensing Image Dense Prediction [58.12667617617306]
本稿では,大規模なVHRリモートセンシング画像における高密度予測タスクに対するリモートセンシング・マンバ(RSM)を提案する。
RSMは、線形複雑度でリモートセンシング画像のグローバルなコンテキストを捉えるように設計されている。
我々のモデルは、大規模なリモートセンシング画像の変換器ベースモデルよりも効率と精度がよい。
論文 参考訳(メタデータ) (2024-04-03T12:06:01Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - RSDiff: Remote Sensing Image Generation from Text Using Diffusion Model [0.8747606955991705]
本研究では,高解像度衛星画像をテキストプロンプトから合成するための2段階拡散モデル手法を提案する。
このパイプラインは、テキスト入力に基づいて初期画像を生成する低解像度拡散モデル(LRDM)と、これらの画像を高解像度出力に洗練する超解拡散モデル(SRDM)から構成される。
論文 参考訳(メタデータ) (2023-09-03T09:34:49Z) - MrSARP: A Hierarchical Deep Generative Prior for SAR Image
Super-resolution [0.5161531917413706]
SAR画像のための新しい階層的深部生成モデルMrSARPを提案する。
MrSARPは、異なる解像度でターゲットの現実的なイメージであるかどうかを判断するために、複数の解像度の画像を共同でスコアする批評家と共同で訓練されている。
我々は,この深部生成モデルを用いて,同じターゲットの低解像度画像から高解像度画像を取得する方法を示す。
論文 参考訳(メタデータ) (2022-11-30T19:12:21Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
エイリアスの影響を抑制するために階層画像超解像ネットワーク(HSRNet)を提案する。
HSRNetは、他の作品よりも定量的かつ視覚的なパフォーマンスを向上し、エイリアスをより効果的に再送信する。
論文 参考訳(メタデータ) (2022-06-07T14:55:32Z) - Deep Posterior Distribution-based Embedding for Hyperspectral Image
Super-resolution [75.24345439401166]
本稿では,高スペクトル画像の高次元空間スペクトル情報を効率的に効率的に埋め込む方法について述べる。
我々は,HS埋め込みを,慎重に定義されたHS埋め込みイベントの集合の後方分布の近似として定式化する。
そして,提案手法を物理的に解釈可能なソース一貫性超解像フレームワークに組み込む。
3つの一般的なベンチマークデータセットに対する実験により、PDE-Netは最先端の手法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2022-05-30T06:59:01Z) - Exploiting Digital Surface Models for Inferring Super-Resolution for
Remotely Sensed Images [2.3204178451683264]
本稿では,SRRモデルにリアルなリモートセンシング画像の出力を強制する新しい手法を提案する。
画像の通常のデジタル表面モデル(nDSM)から推定されるピクセルレベルの情報を知覚的損失として特徴空間の類似性に頼る代わりに、モデルが考慮する。
視覚検査に基づいて、推定された超解像画像は、特に優れた品質を示す。
論文 参考訳(メタデータ) (2022-05-09T06:02:50Z) - Boosting Image Super-Resolution Via Fusion of Complementary Information
Captured by Multi-Modal Sensors [21.264746234523678]
イメージスーパーレゾリューション(sr)は、低解像度光センサの画質を向上させる有望な技術である。
本稿では,安価なチャネル(可視・深度)からの補完情報を活用して,少ないパラメータを用いて高価なチャネル(熱)の画像品質を向上させる。
論文 参考訳(メタデータ) (2020-12-07T02:15:28Z) - Learning Enriched Features for Real Image Restoration and Enhancement [166.17296369600774]
畳み込みニューラルネットワーク(CNN)は、画像復元作業における従来のアプローチよりも劇的に改善されている。
ネットワーク全体を通して空間的精度の高い高解像度表現を維持することを目的とした,新しいアーキテクチャを提案する。
提案手法は,高解像度の空間的詳細を同時に保存しながら,複数のスケールからの文脈情報を組み合わせた豊富な特徴集合を学習する。
論文 参考訳(メタデータ) (2020-03-15T11:04:30Z) - PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of
Generative Models [77.32079593577821]
PULSE (Photo Upsampling via Latent Space Exploration) は、それまで文献になかった解像度で高解像度でリアルな画像を生成する。
本手法は, 従来よりも高分解能, スケールファクターの知覚品質において, 最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-03-08T16:44:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。