Predictive Modeling in the Reservoir Kernel Motif Space
- URL: http://arxiv.org/abs/2405.07045v1
- Date: Sat, 11 May 2024 16:12:25 GMT
- Title: Predictive Modeling in the Reservoir Kernel Motif Space
- Authors: Peter Tino, Robert Simon Fong, Roberto Fabio Leonarduzzi,
- Abstract summary: This work proposes a time series prediction method based on the kernel view of linear reservoirs.
We provide a geometric interpretation of our approach shedding light on how our approach is related to the core reservoir models.
Empirical experiments then compare predictive performances of our suggested model with those of recent state-of-art transformer based models.
- Score: 0.9217021281095907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work proposes a time series prediction method based on the kernel view of linear reservoirs. In particular, the time series motifs of the reservoir kernel are used as representational basis on which general readouts are constructed. We provide a geometric interpretation of our approach shedding light on how our approach is related to the core reservoir models and in what way the two approaches differ. Empirical experiments then compare predictive performances of our suggested model with those of recent state-of-art transformer based models, as well as the established recurrent network model - LSTM. The experiments are performed on both univariate and multivariate time series and with a variety of prediction horizons. Rather surprisingly we show that even when linear readout is employed, our method has the capacity to outperform transformer models on univariate time series and attain competitive results on multivariate benchmark datasets. We conclude that simple models with easily controllable capacity but capturing enough memory and subsequence structure can outperform potentially over-complicated deep learning models. This does not mean that reservoir motif based models are preferable to other more complex alternatives - rather, when introducing a new complex time series model one should employ as a sanity check simple, but potentially powerful alternatives/baselines such as reservoir models or the models introduced here.
Related papers
- Predictive Churn with the Set of Good Models [64.05949860750235]
We study the effect of conflicting predictions over the set of near-optimal machine learning models.
We present theoretical results on the expected churn between models within the Rashomon set.
We show how our approach can be used to better anticipate, reduce, and avoid churn in consumer-facing applications.
arXiv Detail & Related papers (2024-02-12T16:15:25Z) - Predicting Ordinary Differential Equations with Transformers [65.07437364102931]
We develop a transformer-based sequence-to-sequence model that recovers scalar ordinary differential equations (ODEs) in symbolic form from irregularly sampled and noisy observations of a single solution trajectory.
Our method is efficiently scalable: after one-time pretraining on a large set of ODEs, we can infer the governing law of a new observed solution in a few forward passes of the model.
arXiv Detail & Related papers (2023-07-24T08:46:12Z) - Hierarchical Latent Structure for Multi-Modal Vehicle Trajectory
Forecasting [0.0]
We introduce a hierarchical latent structure into a VAE-based trajectory forecasting model.
Our model is capable of generating clear multi-modal trajectory distributions and outperforms the state-of-the-art (SOTA) models in terms of prediction accuracy.
arXiv Detail & Related papers (2022-07-11T04:52:28Z) - Consistent Counterfactuals for Deep Models [25.1271020453651]
Counterfactual examples are used to explain predictions of machine learning models in key areas such as finance and medical diagnosis.
This paper studies the consistency of model prediction on counterfactual examples in deep networks under small changes to initial training conditions.
arXiv Detail & Related papers (2021-10-06T23:48:55Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
We introduce the $gamma$-model, a predictive model of environment dynamics with an infinite probabilistic horizon.
We discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors.
arXiv Detail & Related papers (2020-10-27T17:54:12Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Variational Mixture of Normalizing Flows [0.0]
Deep generative models, such as generative adversarial networks autociteGAN, variational autoencoders autocitevaepaper, and their variants, have seen wide adoption for the task of modelling complex data distributions.
Normalizing flows have overcome this limitation by leveraging the change-of-suchs formula for probability density functions.
The present work overcomes this by using normalizing flows as components in a mixture model and devising an end-to-end training procedure for such a model.
arXiv Detail & Related papers (2020-09-01T17:20:08Z) - Pattern Similarity-based Machine Learning Methods for Mid-term Load
Forecasting: A Comparative Study [0.0]
We use pattern similarity-based methods for forecasting monthly electricity demand expressing annual seasonality.
An integral part of the models is the time series representation using patterns of time series sequences.
We consider four such models: nearest neighbor model, fuzzy neighborhood model, kernel regression model and general regression neural network.
arXiv Detail & Related papers (2020-03-03T12:14:36Z) - Model Reuse with Reduced Kernel Mean Embedding Specification [70.044322798187]
We present a two-phase framework for finding helpful models for a current application.
In the upload phase, when a model is uploading into the pool, we construct a reduced kernel mean embedding (RKME) as a specification for the model.
Then in the deployment phase, the relatedness of the current task and pre-trained models will be measured based on the value of the RKME specification.
arXiv Detail & Related papers (2020-01-20T15:15:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.