Unsupervised Density Neural Representation for CT Metal Artifact Reduction
- URL: http://arxiv.org/abs/2405.07047v1
- Date: Sat, 11 May 2024 16:30:39 GMT
- Title: Unsupervised Density Neural Representation for CT Metal Artifact Reduction
- Authors: Qing Wu, Xu Guo, Lixuan Chen, Dongming He, Hongjiang Wei, Xudong Wang, S. Kevin Zhou, Yifeng Zhang, Jingyi Yu, Yuyao Zhang,
- Abstract summary: We propose a novel unsupervised density neural representation (Diner) to tackle the challenging problem of CT metal artifacts when scanned objects contain metals.
Existing metal artifact reduction (MAR) techniques mostly formulate the MAR as an image inpainting task, which ignores the energy-induced BHE.
We decompose the energy-dependent LACs into energy-independent densities and energy-dependent mass attenuation coefficients (MACs) by fully considering the physical model of X-ray absorption.
- Score: 45.28053148579478
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Emerging unsupervised reconstruction techniques based on implicit neural representation (INR), such as NeRP, CoIL, and SCOPE, have shown unique capabilities in CT linear inverse imaging. In this work, we propose a novel unsupervised density neural representation (Diner) to tackle the challenging problem of CT metal artifacts when scanned objects contain metals. The drastic variation of linear attenuation coefficients (LACs) of metals over X-ray spectra leads to a nonlinear beam hardening effect (BHE) in CT measurements. Recovering CT images from metal-affected measurements therefore poses a complicated nonlinear inverse problem. Existing metal artifact reduction (MAR) techniques mostly formulate the MAR as an image inpainting task, which ignores the energy-induced BHE and produces suboptimal performance. Instead, our Diner introduces an energy-dependent polychromatic CT forward model to the INR framework, addressing the nonlinear nature of the MAR problem. Specifically, we decompose the energy-dependent LACs into energy-independent densities and energy-dependent mass attenuation coefficients (MACs) by fully considering the physical model of X-ray absorption. Using the densities as pivot variables and the MACs as known prior knowledge, the LACs can be accurately reconstructed from the raw measurements. Technically, we represent the unknown density map as an implicit function of coordinates. Combined with a novel differentiable forward model simulating the physical acquisition from the densities to the measurements, our Diner optimizes a multi-layer perception network to approximate the implicit function by minimizing predicted errors between the estimated and real measurements. Experimental results on simulated and real datasets confirm the superiority of our unsupervised Diner against popular supervised techniques in MAR performance and robustness.
Related papers
- Gradient Descent Provably Solves Nonlinear Tomographic Reconstruction [60.95625458395291]
In computed tomography (CT) the forward model consists of a linear transform followed by an exponential nonlinearity based on the attenuation of light according to the Beer-Lambert Law.
We show that this approach reduces metal artifacts compared to a commercial reconstruction of a human skull with metal crowns.
arXiv Detail & Related papers (2023-10-06T00:47:57Z) - Unsupervised CT Metal Artifact Reduction by Plugging Diffusion Priors in
Dual Domains [8.40564813751161]
metallic implants often cause disruptive artifacts in computed tomography (CT) images, impeding accurate diagnosis.
Several supervised deep learning-based approaches have been proposed for reducing metal artifacts (MAR)
We propose an unsupervised MAR method based on the diffusion model, a generative model with a high capacity to represent data distributions.
arXiv Detail & Related papers (2023-08-31T14:00:47Z) - Unsupervised Polychromatic Neural Representation for CT Metal Artifact
Reduction [48.1445005916672]
We present a novel Polychromatic neural representation (Polyner) to tackle the challenging problem of CT imaging when metallic implants exist within the human body.
Our Polyner achieves comparable or better performance than supervised methods on in-domain datasets.
arXiv Detail & Related papers (2023-06-27T04:50:58Z) - DDMM-Synth: A Denoising Diffusion Model for Cross-modal Medical Image
Synthesis with Sparse-view Measurement Embedding [7.6849475214826315]
We propose a novel framework called DDMM- Synth for medical image synthesis.
It combines an MRI-guided diffusion model with a new CT measurement embedding reverse sampling scheme.
It can adjust the projection number of CT a posteriori for a particular clinical application and its modified version can even improve the results significantly for noisy cases.
arXiv Detail & Related papers (2023-03-28T07:13:11Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
During X-ray computed tomography (CT) scanning, metallic implants carrying with patients often lead to adverse artifacts.
Existing deep-learning-based methods have gained promising reconstruction performance.
We propose an orientation-shared convolution representation strategy to adapt the physical prior structures of artifacts.
arXiv Detail & Related papers (2022-12-26T13:56:12Z) - Orthogonal Matrix Retrieval with Spatial Consensus for 3D Unknown-View
Tomography [58.60249163402822]
Unknown-view tomography (UVT) reconstructs a 3D density map from its 2D projections at unknown, random orientations.
The proposed OMR is more robust and performs significantly better than the previous state-of-the-art OMR approach.
arXiv Detail & Related papers (2022-07-06T21:40:59Z) - Regularization by Denoising Sub-sampled Newton Method for Spectral CT
Multi-Material Decomposition [78.37855832568569]
We propose to solve a model-based maximum-a-posterior problem to reconstruct multi-materials images with application to spectral CT.
In particular, we propose to solve a regularized optimization problem based on a plug-in image-denoising function.
We show numerical and experimental results for spectral CT materials decomposition.
arXiv Detail & Related papers (2021-03-25T15:20:10Z) - Combining multimodal information for Metal Artefact Reduction: An
unsupervised deep learning framework [1.1374919153601266]
Metal artefact reduction (MAR) techniques aim at removing metal-induced noise from clinical images.
In MRI, no method has yet been introduced to correct the susceptibility artefact.
We propose an unsupervised deep learning method for multimodal MAR.
arXiv Detail & Related papers (2020-04-20T14:12:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.