Cross-Domain Continual Learning via CLAMP
- URL: http://arxiv.org/abs/2405.07142v1
- Date: Sun, 12 May 2024 02:41:31 GMT
- Title: Cross-Domain Continual Learning via CLAMP
- Authors: Weiwei Weng, Mahardhika Pratama, Jie Zhang, Chen Chen, Edward Yapp Kien Yee, Ramasamy Savitha,
- Abstract summary: CLAMP significantly outperforms established baseline algorithms across all experiments by at least $10%$ margin.
An assessor-guided learning process is put forward to navigate the learning process of a base model.
- Score: 10.553456651003055
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Artificial neural networks, celebrated for their human-like cognitive learning abilities, often encounter the well-known catastrophic forgetting (CF) problem, where the neural networks lose the proficiency in previously acquired knowledge. Despite numerous efforts to mitigate CF, it remains the significant challenge particularly in complex changing environments. This challenge is even more pronounced in cross-domain adaptation following the continual learning (CL) setting, which is a more challenging and realistic scenario that is under-explored. To this end, this article proposes a cross-domain CL approach making possible to deploy a single model in such environments without additional labelling costs. Our approach, namely continual learning approach for many processes (CLAMP), integrates a class-aware adversarial domain adaptation strategy to align a source domain and a target domain. An assessor-guided learning process is put forward to navigate the learning process of a base model assigning a set of weights to every sample controlling the influence of every sample and the interactions of each loss function in such a way to balance the stability and plasticity dilemma thus preventing the CF problem. The first assessor focuses on the negative transfer problem rejecting irrelevant samples of the source domain while the second assessor prevents noisy pseudo labels of the target domain. Both assessors are trained in the meta-learning approach using random transformation techniques and similar samples of the source domain. Theoretical analysis and extensive numerical validations demonstrate that CLAMP significantly outperforms established baseline algorithms across all experiments by at least $10\%$ margin.
Related papers
- Finite-Time Convergence and Sample Complexity of Actor-Critic Multi-Objective Reinforcement Learning [20.491176017183044]
This paper tackles the multi-objective reinforcement learning (MORL) problem.
It introduces an innovative actor-critic algorithm named MOAC which finds a policy by iteratively making trade-offs among conflicting reward signals.
arXiv Detail & Related papers (2024-05-05T23:52:57Z) - DiffClass: Diffusion-Based Class Incremental Learning [30.514281721324853]
Class Incremental Learning (CIL) is challenging due to catastrophic forgetting.
Recent exemplar-free CIL methods attempt to mitigate catastrophic forgetting by synthesizing previous task data.
We propose a novel exemplar-free CIL method to overcome these issues.
arXiv Detail & Related papers (2024-03-08T03:34:18Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
We study a practical problem of Domain Generalization under Category Shift (DGCS)
It aims to simultaneously detect unknown-class samples and classify known-class samples in the target domains.
Compared to prior DG works, we face two new challenges: 1) how to learn the concept of unknown'' during training with only source known-class samples, and 2) how to adapt the source-trained model to unseen environments.
arXiv Detail & Related papers (2023-10-07T07:53:12Z) - Unsupervised Adaptation of Polyp Segmentation Models via Coarse-to-Fine
Self-Supervision [16.027843524655516]
We study a practical problem of Source-Free Domain Adaptation (SFDA), which eliminates the reliance on annotated source data.
Current SFDA methods focus on extracting domain knowledge from the source-trained model but neglects the intrinsic structure of the target domain.
We propose a new SFDA framework, called Region-to-Pixel Adaptation Network(RPANet), which learns the region-level and pixel-level discriminative representations through coarse-to-fine self-supervision.
arXiv Detail & Related papers (2023-08-13T02:37:08Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
We propose a new clustering-based domain adaptation method designed for face recognition task in which the source and target domain do not share any classes.
Our method effectively learns the discriminative target feature by aligning the feature domain globally, and, at the meantime, distinguishing the target clusters locally.
arXiv Detail & Related papers (2022-05-27T12:29:11Z) - DRFLM: Distributionally Robust Federated Learning with Inter-client
Noise via Local Mixup [58.894901088797376]
federated learning has emerged as a promising approach for training a global model using data from multiple organizations without leaking their raw data.
We propose a general framework to solve the above two challenges simultaneously.
We provide comprehensive theoretical analysis including robustness analysis, convergence analysis, and generalization ability.
arXiv Detail & Related papers (2022-04-16T08:08:29Z) - Feature Diversity Learning with Sample Dropout for Unsupervised Domain
Adaptive Person Re-identification [0.0]
This paper proposes a new approach to learn the feature representation with better generalization ability through limiting noisy pseudo labels.
We put forward a brand-new method referred as to Feature Diversity Learning (FDL) under the classic mutual-teaching architecture.
Experimental results show that our proposed FDL-SD achieves the state-of-the-art performance on multiple benchmark datasets.
arXiv Detail & Related papers (2022-01-25T10:10:48Z) - Semi-supervised Domain Adaptive Structure Learning [72.01544419893628]
Semi-supervised domain adaptation (SSDA) is a challenging problem requiring methods to overcome both 1) overfitting towards poorly annotated data and 2) distribution shift across domains.
We introduce an adaptive structure learning method to regularize the cooperation of SSL and DA.
arXiv Detail & Related papers (2021-12-12T06:11:16Z) - Coarse to Fine: Domain Adaptive Crowd Counting via Adversarial Scoring
Network [58.05473757538834]
This paper proposes a novel adversarial scoring network (ASNet) to bridge the gap across domains from coarse to fine granularity.
Three sets of migration experiments show that the proposed methods achieve state-of-the-art counting performance.
arXiv Detail & Related papers (2021-07-27T14:47:24Z) - A Transductive Multi-Head Model for Cross-Domain Few-Shot Learning [72.30054522048553]
We present a new method, Transductive Multi-Head Few-Shot learning (TMHFS), to address the Cross-Domain Few-Shot Learning challenge.
The proposed methods greatly outperform the strong baseline, fine-tuning, on four different target domains.
arXiv Detail & Related papers (2020-06-08T02:39:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.