3D Hand Mesh Recovery from Monocular RGB in Camera Space
- URL: http://arxiv.org/abs/2405.07167v1
- Date: Sun, 12 May 2024 05:36:37 GMT
- Title: 3D Hand Mesh Recovery from Monocular RGB in Camera Space
- Authors: Haonan Li, Patrick P. K. Chen, Yitong Zhou,
- Abstract summary: This study proposes a network model that performs parallel processing of root-relative grids and root recovery tasks.
We utilize an implicit learning approach for 2D heatmaps, enhancing the compatibility of 2D cues across different subtasks.
Our proposed model is comparable with state-of-the-art models.
- Score: 3.0453197258042213
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid advancement of technologies such as virtual reality, augmented reality, and gesture control, users expect interactions with computer interfaces to be more natural and intuitive. Existing visual algorithms often struggle to accomplish advanced human-computer interaction tasks, necessitating accurate and reliable absolute spatial prediction methods. Moreover, dealing with complex scenes and occlusions in monocular images poses entirely new challenges. This study proposes a network model that performs parallel processing of root-relative grids and root recovery tasks. The model enables the recovery of 3D hand meshes in camera space from monocular RGB images. To facilitate end-to-end training, we utilize an implicit learning approach for 2D heatmaps, enhancing the compatibility of 2D cues across different subtasks. Incorporate the Inception concept into spectral graph convolutional network to explore relative mesh of root, and integrate it with the locally detailed and globally attentive method designed for root recovery exploration. This approach improves the model's predictive performance in complex environments and self-occluded scenes. Through evaluation on the large-scale hand dataset FreiHAND, we have demonstrated that our proposed model is comparable with state-of-the-art models. This study contributes to the advancement of techniques for accurate and reliable absolute spatial prediction in various human-computer interaction applications.
Related papers
- Spatially Visual Perception for End-to-End Robotic Learning [33.490603706207075]
We introduce a video-based spatial perception framework that leverages 3D spatial representations to address environmental variability.
Our approach integrates a novel image augmentation technique, AugBlender, with a state-of-the-art monocular depth estimation model trained on internet-scale data.
arXiv Detail & Related papers (2024-11-26T14:23:42Z) - Kinematics-based 3D Human-Object Interaction Reconstruction from Single View [10.684643503514849]
Existing methods simply predict the body poses merely rely on network training on some indoor datasets.
We propose a kinematics-based method that can drive the joints of human body to the human-object contact regions accurately.
arXiv Detail & Related papers (2024-07-19T05:44:35Z) - DICE: End-to-end Deformation Capture of Hand-Face Interactions from a Single Image [98.29284902879652]
We present DICE, the first end-to-end method for Deformation-aware hand-face Interaction reCovEry from a single image.
It features disentangling the regression of local deformation fields and global mesh locations into two network branches.
It achieves state-of-the-art performance on a standard benchmark and in-the-wild data in terms of accuracy and physical plausibility.
arXiv Detail & Related papers (2024-06-26T00:08:29Z) - Enhancing Generalizability of Representation Learning for Data-Efficient 3D Scene Understanding [50.448520056844885]
We propose a generative Bayesian network to produce diverse synthetic scenes with real-world patterns.
A series of experiments robustly display our method's consistent superiority over existing state-of-the-art pre-training approaches.
arXiv Detail & Related papers (2024-06-17T07:43:53Z) - Neural Point-based Volumetric Avatar: Surface-guided Neural Points for
Efficient and Photorealistic Volumetric Head Avatar [62.87222308616711]
We propose fullname (name), a method that adopts the neural point representation and the neural volume rendering process.
Specifically, the neural points are strategically constrained around the surface of the target expression via a high-resolution UV displacement map.
By design, our name is better equipped to handle topologically changing regions and thin structures while also ensuring accurate expression control when animating avatars.
arXiv Detail & Related papers (2023-07-11T03:40:10Z) - Semi-Perspective Decoupled Heatmaps for 3D Robot Pose Estimation from
Depth Maps [66.24554680709417]
Knowing the exact 3D location of workers and robots in a collaborative environment enables several real applications.
We propose a non-invasive framework based on depth devices and deep neural networks to estimate the 3D pose of robots from an external camera.
arXiv Detail & Related papers (2022-07-06T08:52:12Z) - RiCS: A 2D Self-Occlusion Map for Harmonizing Volumetric Objects [68.85305626324694]
Ray-marching in Camera Space (RiCS) is a new method to represent the self-occlusions of foreground objects in 3D into a 2D self-occlusion map.
We show that our representation map not only allows us to enhance the image quality but also to model temporally coherent complex shadow effects.
arXiv Detail & Related papers (2022-05-14T05:35:35Z) - RGB2Hands: Real-Time Tracking of 3D Hand Interactions from Monocular RGB
Video [76.86512780916827]
We present the first real-time method for motion capture of skeletal pose and 3D surface geometry of hands from a single RGB camera.
In order to address the inherent depth ambiguities in RGB data, we propose a novel multi-task CNN.
We experimentally verify the individual components of our RGB two-hand tracking and 3D reconstruction pipeline.
arXiv Detail & Related papers (2021-06-22T12:53:56Z) - A Markerless Deep Learning-based 6 Degrees of Freedom PoseEstimation for
with Mobile Robots using RGB Data [3.4806267677524896]
We propose a method to deploy state of the art neural networks for real time 3D object localization on augmented reality devices.
We focus on fast 2D detection approaches which are extracting the 3D pose of the object fast and accurately by using only 2D input.
For the 6D annotation of 2D images, we developed an annotation tool, which is, to our knowledge, the first open source tool to be available.
arXiv Detail & Related papers (2020-01-16T09:13:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.