Ensemble Successor Representations for Task Generalization in Offline-to-Online Reinforcement Learning
- URL: http://arxiv.org/abs/2405.07223v1
- Date: Sun, 12 May 2024 08:52:52 GMT
- Title: Ensemble Successor Representations for Task Generalization in Offline-to-Online Reinforcement Learning
- Authors: Changhong Wang, Xudong Yu, Chenjia Bai, Qiaosheng Zhang, Zhen Wang,
- Abstract summary: offline RL provides a promising solution by giving an offline policy, which can be refined through online interactions.
Existing approaches perform offline and online learning in the same task, without considering the task generalization problem in offline-to-online adaptation.
Our work builds upon the investigation of successor representations for task generalization in online RL and extends the framework to incorporate offline-to-online learning.
- Score: 8.251711947874238
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In Reinforcement Learning (RL), training a policy from scratch with online experiences can be inefficient because of the difficulties in exploration. Recently, offline RL provides a promising solution by giving an initialized offline policy, which can be refined through online interactions. However, existing approaches primarily perform offline and online learning in the same task, without considering the task generalization problem in offline-to-online adaptation. In real-world applications, it is common that we only have an offline dataset from a specific task while aiming for fast online-adaptation for several tasks. To address this problem, our work builds upon the investigation of successor representations for task generalization in online RL and extends the framework to incorporate offline-to-online learning. We demonstrate that the conventional paradigm using successor features cannot effectively utilize offline data and improve the performance for the new task by online fine-tuning. To mitigate this, we introduce a novel methodology that leverages offline data to acquire an ensemble of successor representations and subsequently constructs ensemble Q functions. This approach enables robust representation learning from datasets with different coverage and facilitates fast adaption of Q functions towards new tasks during the online fine-tuning phase. Extensive empirical evaluations provide compelling evidence showcasing the superior performance of our method in generalizing to diverse or even unseen tasks.
Related papers
- Continual Task Learning through Adaptive Policy Self-Composition [54.95680427960524]
CompoFormer is a structure-based continual transformer model that adaptively composes previous policies via a meta-policy network.
Our experiments reveal that CompoFormer outperforms conventional continual learning (CL) methods, particularly in longer task sequences.
arXiv Detail & Related papers (2024-11-18T08:20:21Z) - Offline Reinforcement Learning from Datasets with Structured Non-Stationarity [50.35634234137108]
Current Reinforcement Learning (RL) is often limited by the large amount of data needed to learn a successful policy.
We address a novel Offline RL problem setting in which, while collecting the dataset, the transition and reward functions gradually change between episodes but stay constant within each episode.
We propose a method based on Contrastive Predictive Coding that identifies this non-stationarity in the offline dataset, accounts for it when training a policy, and predicts it during evaluation.
arXiv Detail & Related papers (2024-05-23T02:41:36Z) - Uni-O4: Unifying Online and Offline Deep Reinforcement Learning with Multi-Step On-Policy Optimization [24.969834057981046]
Previous approaches treat offline and online learning as separate procedures, resulting in redundant designs and limited performance.
We propose Uni-o4, which utilizes an on-policy objective for both offline and online learning.
We demonstrate that our method achieves state-of-the-art performance in both offline and offline-to-online fine-tuning learning.
arXiv Detail & Related papers (2023-11-06T18:58:59Z) - ENOTO: Improving Offline-to-Online Reinforcement Learning with Q-Ensembles [52.34951901588738]
We propose a novel framework called ENsemble-based Offline-To-Online (ENOTO) RL.
By increasing the number of Q-networks, we seamlessly bridge offline pre-training and online fine-tuning without degrading performance.
Experimental results demonstrate that ENOTO can substantially improve the training stability, learning efficiency, and final performance of existing offline RL methods.
arXiv Detail & Related papers (2023-06-12T05:10:10Z) - Offline Meta Reinforcement Learning with In-Distribution Online
Adaptation [38.35415999829767]
We first characterize a unique challenge in offline meta-RL: transition-reward distribution shift between offline datasets and online adaptation.
We propose a novel adaptation framework, called In-Distribution online Adaptation with uncertainty Quantification (IDAQ)
IDAQ generates in-distribution context using a given uncertainty and performs effective task belief inference to address new tasks.
arXiv Detail & Related papers (2023-05-31T03:34:39Z) - Adaptive Policy Learning for Offline-to-Online Reinforcement Learning [27.80266207283246]
We consider an offline-to-online setting where the agent is first learned from the offline dataset and then trained online.
We propose a framework called Adaptive Policy Learning for effectively taking advantage of offline and online data.
arXiv Detail & Related papers (2023-03-14T08:13:21Z) - Efficient Online Reinforcement Learning with Offline Data [78.92501185886569]
We show that we can simply apply existing off-policy methods to leverage offline data when learning online.
We extensively ablate these design choices, demonstrating the key factors that most affect performance.
We see that correct application of these simple recommendations can provide a $mathbf2.5times$ improvement over existing approaches.
arXiv Detail & Related papers (2023-02-06T17:30:22Z) - MOORe: Model-based Offline-to-Online Reinforcement Learning [26.10368749930102]
We propose a model-based Offline-to-Online Reinforcement learning (MOORe) algorithm.
Experiment results show that our algorithm smoothly transfers from offline to online stages while enabling sample-efficient online adaption.
arXiv Detail & Related papers (2022-01-25T03:14:57Z) - A Workflow for Offline Model-Free Robotic Reinforcement Learning [117.07743713715291]
offline reinforcement learning (RL) enables learning control policies by utilizing only prior experience, without any online interaction.
We develop a practical workflow for using offline RL analogous to the relatively well-understood for supervised learning problems.
We demonstrate the efficacy of this workflow in producing effective policies without any online tuning.
arXiv Detail & Related papers (2021-09-22T16:03:29Z) - OPAL: Offline Primitive Discovery for Accelerating Offline Reinforcement
Learning [107.6943868812716]
In many practical applications, the situation is reversed: an agent may have access to large amounts of undirected offline experience data, while access to the online environment is severely limited.
Our main insight is that, when presented with offline data composed of a variety of behaviors, an effective way to leverage this data is to extract a continuous space of recurring and temporally extended primitive behaviors.
In addition to benefiting offline policy optimization, we show that performing offline primitive learning in this way can also be leveraged for improving few-shot imitation learning.
arXiv Detail & Related papers (2020-10-26T14:31:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.