MOORe: Model-based Offline-to-Online Reinforcement Learning
- URL: http://arxiv.org/abs/2201.10070v1
- Date: Tue, 25 Jan 2022 03:14:57 GMT
- Title: MOORe: Model-based Offline-to-Online Reinforcement Learning
- Authors: Yihuan Mao, Chao Wang, Bin Wang, Chongjie Zhang
- Abstract summary: We propose a model-based Offline-to-Online Reinforcement learning (MOORe) algorithm.
Experiment results show that our algorithm smoothly transfers from offline to online stages while enabling sample-efficient online adaption.
- Score: 26.10368749930102
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the success of offline reinforcement learning (RL), offline trained RL
policies have the potential to be further improved when deployed online. A
smooth transfer of the policy matters in safe real-world deployment. Besides,
fast adaptation of the policy plays a vital role in practical online
performance improvement. To tackle these challenges, we propose a simple yet
efficient algorithm, Model-based Offline-to-Online Reinforcement learning
(MOORe), which employs a prioritized sampling scheme that can dynamically
adjust the offline and online data for smooth and efficient online adaptation
of the policy. We provide a theoretical foundation for our algorithms design.
Experiment results on the D4RL benchmark show that our algorithm smoothly
transfers from offline to online stages while enabling sample-efficient online
adaption, and also significantly outperforms existing methods.
Related papers
- Bayesian Design Principles for Offline-to-Online Reinforcement Learning [50.97583504192167]
offline-to-online fine-tuning is crucial for real-world applications where exploration can be costly or unsafe.
In this paper, we tackle the dilemma of offline-to-online fine-tuning: if the agent remains pessimistic, it may fail to learn a better policy, while if it becomes optimistic directly, performance may suffer from a sudden drop.
We show that Bayesian design principles are crucial in solving such a dilemma.
arXiv Detail & Related papers (2024-05-31T16:31:07Z) - Offline-Boosted Actor-Critic: Adaptively Blending Optimal Historical Behaviors in Deep Off-Policy RL [42.57662196581823]
Off-policy reinforcement learning (RL) has achieved notable success in tackling many complex real-world tasks.
Most existing off-policy RL algorithms fail to maximally exploit the information in the replay buffer.
We present Offline-Boosted Actor-Critic (OBAC), a model-free online RL framework that elegantly identifies the outperforming offline policy.
arXiv Detail & Related papers (2024-05-28T18:38:46Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
We study the problem of offline pre-training and online fine-tuning for reinforcement learning from high-dimensional observations.
Existing model-based offline RL methods are not suitable for offline-to-online fine-tuning in high-dimensional domains.
We propose an on-policy model-based method that can efficiently reuse prior data through model-based value expansion and policy regularization.
arXiv Detail & Related papers (2024-01-06T21:04:31Z) - Small Dataset, Big Gains: Enhancing Reinforcement Learning by Offline
Pre-Training with Model Based Augmentation [59.899714450049494]
offline pre-training can produce sub-optimal policies and lead to degraded online reinforcement learning performance.
We propose a model-based data augmentation strategy to maximize the benefits of offline reinforcement learning pre-training and reduce the scale of data needed to be effective.
arXiv Detail & Related papers (2023-12-15T14:49:41Z) - ENOTO: Improving Offline-to-Online Reinforcement Learning with Q-Ensembles [52.34951901588738]
We propose a novel framework called ENsemble-based Offline-To-Online (ENOTO) RL.
By increasing the number of Q-networks, we seamlessly bridge offline pre-training and online fine-tuning without degrading performance.
Experimental results demonstrate that ENOTO can substantially improve the training stability, learning efficiency, and final performance of existing offline RL methods.
arXiv Detail & Related papers (2023-06-12T05:10:10Z) - PROTO: Iterative Policy Regularized Offline-to-Online Reinforcement
Learning [11.729563922115352]
Offline-to-online reinforcement learning (RL) promises enhanced sample efficiency and policy performance.
Existing methods suffer from suboptimal performance, limited adaptability, and unsatisfactory computational efficiency.
We propose a novel framework, PROTO, which augmenting the standard RL objective with an iteratively evolving regularization term.
arXiv Detail & Related papers (2023-05-25T02:40:32Z) - Finetuning from Offline Reinforcement Learning: Challenges, Trade-offs
and Practical Solutions [30.050083797177706]
offline reinforcement learning (RL) allows for the training of competent agents from offline datasets without any interaction with the environment.
Online finetuning of such offline models can further improve performance.
We show that it is possible to use standard online off-policy algorithms for faster improvement.
arXiv Detail & Related papers (2023-03-30T14:08:31Z) - Adaptive Policy Learning for Offline-to-Online Reinforcement Learning [27.80266207283246]
We consider an offline-to-online setting where the agent is first learned from the offline dataset and then trained online.
We propose a framework called Adaptive Policy Learning for effectively taking advantage of offline and online data.
arXiv Detail & Related papers (2023-03-14T08:13:21Z) - Adaptive Behavior Cloning Regularization for Stable Offline-to-Online
Reinforcement Learning [80.25648265273155]
Offline reinforcement learning, by learning from a fixed dataset, makes it possible to learn agent behaviors without interacting with the environment.
During online fine-tuning, the performance of the pre-trained agent may collapse quickly due to the sudden distribution shift from offline to online data.
We propose to adaptively weigh the behavior cloning loss during online fine-tuning based on the agent's performance and training stability.
Experiments show that the proposed method yields state-of-the-art offline-to-online reinforcement learning performance on the popular D4RL benchmark.
arXiv Detail & Related papers (2022-10-25T09:08:26Z) - Behavioral Priors and Dynamics Models: Improving Performance and Domain
Transfer in Offline RL [82.93243616342275]
We introduce Offline Model-based RL with Adaptive Behavioral Priors (MABE)
MABE is based on the finding that dynamics models, which support within-domain generalization, and behavioral priors, which support cross-domain generalization, are complementary.
In experiments that require cross-domain generalization, we find that MABE outperforms prior methods.
arXiv Detail & Related papers (2021-06-16T20:48:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.