Quantum variational learning for entanglement witnessing
- URL: http://arxiv.org/abs/2205.10429v1
- Date: Fri, 20 May 2022 20:14:28 GMT
- Title: Quantum variational learning for entanglement witnessing
- Authors: Francesco Scala, Stefano Mangini, Chiara Macchiavello, Daniele Bajoni,
Dario Gerace
- Abstract summary: This work focuses on the potential implementation of quantum algorithms allowing to properly classify quantum states defined over a single register of $n$ qubits.
We exploit the notion of "entanglement witness", i.e., an operator whose expectation values allow to identify certain specific states as entangled.
We made use of Quantum Neural Networks (QNNs) in order to successfully learn how to reproduce the action of an entanglement witness.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Several proposals have been recently introduced to implement Quantum Machine
Learning (QML) algorithms for the analysis of classical data sets employing
variational learning means. There has been, however, a limited amount of work
on the characterization and analysis of quantum data by means of these
techniques, so far. This work focuses on one such ambitious goal, namely the
potential implementation of quantum algorithms allowing to properly classify
quantum states defined over a single register of $n$ qubits, based on their
degree of entanglement. This is a notoriously hard task to be performed on
classical hardware, due to the exponential scaling of the corresponding Hilbert
space as $2^n$. We exploit the notion of "entanglement witness", i.e., an
operator whose expectation values allow to identify certain specific states as
entangled. More in detail, we made use of Quantum Neural Networks (QNNs) in
order to successfully learn how to reproduce the action of an entanglement
witness. This work may pave the way to an efficient combination of QML
algorithms and quantum information protocols, possibly outperforming classical
approaches to analyse quantum data. All these topics are discussed and properly
demonstrated through a simulation of the related quantum circuit model.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum Imitation Learning [74.15588381240795]
We propose quantum imitation learning (QIL) with a hope to utilize quantum advantage to speed up IL.
We develop two QIL algorithms, quantum behavioural cloning (Q-BC) and quantum generative adversarial imitation learning (Q-GAIL)
Experiment results demonstrate that both Q-BC and Q-GAIL can achieve comparable performance compared to classical counterparts.
arXiv Detail & Related papers (2023-04-04T12:47:35Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - State preparation and evolution in quantum computing: a perspective from
Hamiltonian moments [5.774827369850958]
Recent efforts highlight the development of quantum algorithms based upon quantum computed Hamiltonian moments.
This tutorial review focuses on the typical ways of computing Hamiltonian moments using quantum hardware and improving the accuracy of the estimated state energies.
arXiv Detail & Related papers (2021-09-27T04:24:19Z) - Certification of quantum states with hidden structure of their
bitstrings [0.0]
We propose a numerically cheap procedure to describe and distinguish quantum states.
We show that it is enough to characterize quantum states with different structure of entanglement.
Our approach can be employed to detect phase transitions of different nature in many-body quantum magnetic systems.
arXiv Detail & Related papers (2021-07-21T06:22:35Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Trainable Discrete Feature Embeddings for Variational Quantum Classifier [4.40450723619303]
We show how to map discrete features with fewer quantum bits using Quantum Random Access Coding (QRAC)
We propose a new method to embed discrete features with trainable quantum circuits by combining QRAC and a recently proposed strategy for training quantum feature map called quantum metric learning.
arXiv Detail & Related papers (2021-06-17T12:02:01Z) - Variational Quantum Anomaly Detection: Unsupervised mapping of phase
diagrams on a physical quantum computer [0.0]
We propose variational quantum anomaly detection, an unsupervised quantum machine learning algorithm to analyze quantum data from quantum simulation.
The algorithm is used to extract the phase diagram of a system with no prior physical knowledge.
We show that it can be used with readily accessible devices nowadays and perform the algorithm on a real quantum computer.
arXiv Detail & Related papers (2021-06-15T06:54:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.