OXYGENERATOR: Reconstructing Global Ocean Deoxygenation Over a Century with Deep Learning
- URL: http://arxiv.org/abs/2405.07233v1
- Date: Sun, 12 May 2024 09:32:40 GMT
- Title: OXYGENERATOR: Reconstructing Global Ocean Deoxygenation Over a Century with Deep Learning
- Authors: Bin Lu, Ze Zhao, Luyu Han, Xiaoying Gan, Yuntao Zhou, Lei Zhou, Luoyi Fu, Xinbing Wang, Chenghu Zhou, Jing Zhang,
- Abstract summary: Existing expert-dominated numerical simulations fail to catch up with the dynamic variation caused by global warming and human activities.
We propose OxyGenerator, the first deep learning based model, to reconstruct the global ocean deoxygenation from 1920 to 2023.
- Score: 50.365198230613956
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurately reconstructing the global ocean deoxygenation over a century is crucial for assessing and protecting marine ecosystem. Existing expert-dominated numerical simulations fail to catch up with the dynamic variation caused by global warming and human activities. Besides, due to the high-cost data collection, the historical observations are severely sparse, leading to big challenge for precise reconstruction. In this work, we propose OxyGenerator, the first deep learning based model, to reconstruct the global ocean deoxygenation from 1920 to 2023. Specifically, to address the heterogeneity across large temporal and spatial scales, we propose zoning-varying graph message-passing to capture the complex oceanographic correlations between missing values and sparse observations. Additionally, to further calibrate the uncertainty, we incorporate inductive bias from dissolved oxygen (DO) variations and chemical effects. Compared with in-situ DO observations, OxyGenerator significantly outperforms CMIP6 numerical simulations, reducing MAPE by 38.77%, demonstrating a promising potential to understand the "breathless ocean" in data-driven manner.
Related papers
- Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
Methane (CH_4) is a potent anthropogenic greenhouse gas, contributing 86 times more to global warming than Carbon Dioxide (CO_2) over 20 years.
This work expands existing information on operational methane point source detection sensors in the Short-Wave Infrared (SWIR) bands.
It reviews the state-of-the-art for traditional as well as Machine Learning (ML) approaches.
arXiv Detail & Related papers (2024-08-27T15:03:20Z) - Generative Diffusion Model-based Downscaling of Observed Sea Surface Height over Kuroshio Extension since 2000 [11.444439142505756]
We introduce a state-of-the-art generative diffusion model to train high-resolution sea surface height reanalysis data.
The model effectively downscales raw satellite-interpolated data from 0.25o resolution to 1/16o, corresponding to approximately 12-km wavelength.
Our results indicate that eddy kinetic energy at horizontal scales less than 250 km has intensified significantly since 2004 in the Kuroshio Extension region.
arXiv Detail & Related papers (2024-08-22T13:26:19Z) - Kinematics Modeling of Peroxy Free Radicals: A Deep Reinforcement Learning Approach [0.0]
Tropospheric ozone has been associated with health issues including asthma, bronchitis, and impaired lung function.
Rates at which peroxy radicals react with NO play a critical role in the overall formation and depletion of tropospheric ozone.
Deep reinforcement learning was used to predict ranges of rate constants with exceptional accuracy.
arXiv Detail & Related papers (2024-04-12T05:51:28Z) - Multi-Modal Learning-based Reconstruction of High-Resolution Spatial
Wind Speed Fields [46.72819846541652]
We propose a framework based on Vari Data Assimilation and Deep Learning concepts.
This framework is applied to recover rich-in-time, high-resolution information on sea surface wind speed.
arXiv Detail & Related papers (2023-12-14T13:40:39Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
Climate change exacerbates the long-term soil management problem of groundwater contamination.
We develop a physics-informed machine learning surrogate model using U-Net enhanced Fourier Neural Contaminated (PDENO)
In parallel, we develop a convolutional autoencoder combined with climate data to reduce the dimensionality of climatic region similarities across the United States.
arXiv Detail & Related papers (2022-11-20T06:46:35Z) - Spatiotemporal modeling of European paleoclimate using doubly sparse
Gaussian processes [61.31361524229248]
We build on recent scale sparsetemporal GPs to reduce the computational burden.
We successfully employ such a doubly sparse GP to construct a probabilistic model of paleoclimate.
arXiv Detail & Related papers (2022-11-15T14:15:04Z) - Predicting Critical Biogeochemistry of the Southern Ocean for Climate
Monitoring [1.8689461238197955]
We train neural networks to predict silicate and phosphate values in the Southern Ocean from temperature, pressure, salinity, oxygen, nitrate, and location.
We apply these models to earth system model (ESM) and BGC-Argo data to expand the utility of this ocean observation network.
arXiv Detail & Related papers (2021-10-30T00:13:46Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
We propose SALT: Sea lice Adaptive Lattice Tracking approach for efficient estimation of sea lice dispersion and distribution.
Specifically, an adaptive spatial mesh is generated by merging nodes in the lattice graph of the Ocean Model based on local ocean properties.
The proposed SALT technique shows promise for enhancing proactive aquaculture management through predictive modelling of sea lice infestation pressure maps in a changing climate.
arXiv Detail & Related papers (2021-06-24T17:29:42Z) - Modeling Cell Populations Measured By Flow Cytometry With Covariates
Using Sparse Mixture of Regressions [2.5463557459240955]
The ocean is filled with microscopic microalgae called phytoplankton, which together are responsible for as much photosynthesis as all plants on land combined.
Our ability to predict their response to the warming ocean relies on understanding how the dynamics of phytoplankton populations is influenced by changes in environmental conditions.
Today, oceanographers are able to collect flow data in real-time onboard a moving ship, providing them with fine-scale resolution of the distribution of phytoplankton across thousands of kilometers.
arXiv Detail & Related papers (2020-08-25T20:03:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.