論文の概要: Handwriting Anomalies and Learning Disabilities through Recurrent Neural Networks and Geometric Pattern Analysis
- arxiv url: http://arxiv.org/abs/2405.07238v2
- Date: Thu, 26 Dec 2024 05:28:54 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-26 03:36:35.181557
- Title: Handwriting Anomalies and Learning Disabilities through Recurrent Neural Networks and Geometric Pattern Analysis
- Title(参考訳): リカレントニューラルネットワークと幾何学的パターン解析による手書き異常と学習障害
- Authors: Vasileios Alevizos, Sabrina Edralin, Akebu Simasiku, Dimitra Malliarou, Antonis Messinis, George Papakostas, Clark Xu, Zongliang Yue,
- Abstract要約: 本研究では、高度な幾何学的パターンとリカレントニューラルネットワーク(RNN)を用いて、失読と失読を示す手書き異常を同定する。
書き起こしはまず標準化され、次にベースラインのずれ、文字の接続性、ストロークの厚さ、その他の異常に焦点を当てた特徴抽出が続く。
最初の結果は、このRNNモデルが、ジストレキシーとジストニアを併用して、最先端の性能を達成する能力を示した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Dyslexia and dysgraphia are learning disabilities that profoundly impact reading, writing, and language processing capabilities. Dyslexia primarily affects reading, manifesting as difficulties in word recognition and phonological processing, where individuals struggle to connect sounds with their corresponding letters. Dysgraphia, on the other hand, affects writing skills, resulting in difficulties with letter formation, spacing, and alignment. The coexistence of dyslexia and dysgraphia complicates diagnosis, requiring a nuanced approach capable of adapting to these complexities while accurately identifying and differentiating between the disorders. This study utilizes advanced geometrical patterns and recurrent neural networks (RNN) to identify handwriting anomalies indicative of dyslexia and dysgraphia. Handwriting is first standardized, followed by feature extraction that focuses on baseline deviations, letter connectivity, stroke thickness, and other anomalies. These features are then fed into an RNN-based autoencoder to identify irregularities. Initial results demonstrate the ability of this RNN model to achieve state-of-art performance on combined dyslexia and dysgraphia detection, while showing the challenges associated with complex pattern adaptation of deep-learning to a diverse corpus of about 33,000 writing samples.
- Abstract(参考訳): 失読症と失読症(Dyslexia)は、読み書き能力、言語処理能力に大きな影響を及ぼす学習障害である。
ダイスレキシアは主として読みに影響を与え、単語認識と音韻処理の困難さとして現れ、個人は対応する文字と音を結びつけるのに苦労する。
一方、図形学は文章のスキルに影響を与え、文字の形成、間隔、アライメントに支障をきたす。
失読症と失読症の共存は診断を複雑にし、これらの複雑さに適応できるニュアンスなアプローチを必要とし、障害を正確に識別し区別する。
本研究では、高度な幾何学的パターンとリカレントニューラルネットワーク(RNN)を用いて、失読と失読を示す手書き異常を同定する。
書き起こしはまず標準化され、次にベースラインのずれ、文字の接続性、ストロークの厚さ、その他の異常に焦点を当てた特徴抽出が続く。
これらの機能はRNNベースのオートエンコーダに入力され、不規則性を識別する。
最初の結果は、このRNNモデルが、約33,000の筆記サンプルの多種多様なコーパスへのディープラーニングの複雑なパターン適応に関わる課題を提示しながら、ジレキシン症とジストロフィー検出の併用による最先端性能を達成する能力を示した。
関連論文リスト
- Boosting Semi-Supervised Scene Text Recognition via Viewing and Summarizing [71.29488677105127]
既存のシーンテキスト認識(STR)手法は、特に芸術的で歪んだ文字に対して、挑戦的なテキストを認識するのに苦労している。
人的コストを伴わずに、合成データと実際のラベルなしデータを活用して、対照的な学習ベースのSTRフレームワークを提案する。
本手法は,共通ベンチマークとUnion14M-Benchmarkで平均精度94.7%,70.9%のSOTA性能を実現する。
論文 参考訳(メタデータ) (2024-11-23T15:24:47Z) - Towards Accessible Learning: Deep Learning-Based Potential Dysgraphia Detection and OCR for Potentially Dysgraphic Handwriting [1.9575346216959502]
図形障害(Dysgraphia)は、手書き能力に影響を与える学習障害である。
早期検出とモニタリングは、タイムリーなサポートと介入を提供するために不可欠である。
本研究では、ディープラーニング技術を用いて、ディジグラフィ検出と光学的文字認識の2つの課題に対処する。
論文 参考訳(メタデータ) (2024-11-18T13:28:26Z) - Explainable AI in Handwriting Detection for Dyslexia Using Transfer Learning [0.0]
このフレームワークはトランスファーラーニングとトランスフォーマーベースのモデルを統合し、ディフレキシアに関連する手書きの特徴を識別する。
異なる言語や書記システムへの適応性は、グローバルな適用可能性を示している。
この知見は、早期発見を支援し、ステークホルダ信頼を構築し、パーソナライズされた教育戦略を可能にするフレームワークの能力を強調した。
論文 参考訳(メタデータ) (2024-10-18T11:14:54Z) - Negation Blindness in Large Language Models: Unveiling the NO Syndrome in Image Generation [63.064204206220936]
基礎的な大規模言語モデル(LLM)は、私たちが技術を理解する方法を変えました。
詩の執筆からコーディング、エッセイ生成、パズルの解決まで、様々な課題に長けていることが示されている。
画像生成機能の導入により、より包括的で汎用的なAIツールとなった。
現在特定されている欠陥には、幻覚、偏見、有害なコンテンツを生成するために制限されたコマンドをバイパスすることが含まれる。
論文 参考訳(メタデータ) (2024-08-27T14:40:16Z) - Provably Secure Disambiguating Neural Linguistic Steganography [66.30965740387047]
サブワードに基づく言語モデルを使用する際に生じるセグメンテーションの曖昧さ問題は、時にはデコード障害を引き起こす。
そこで我々はSyncPoolという,セグメンテーションのあいまいさ問題に効果的に対処する,セキュアな曖昧さ回避手法を提案する。
SyncPoolは、候補プールのサイズやトークンの分布を変えないため、確実に安全な言語ステガノグラフィー手法に適用できる。
論文 参考訳(メタデータ) (2024-03-26T09:25:57Z) - EEG Connectivity Analysis Using Denoising Autoencoders for the Detection
of Dyslexia [0.0]
LEEDUCA研究は、低リズム韻律(0.5-1Hz)、音素(4-8Hz)、音素(12-40Hz)で振幅変調(AM)雑音を聴く小児の脳波実験を行った。
本研究の目的は、これらの違いが存在するかどうか、また、言語の違いによる子どものパフォーマンスと、ディフレキシーの検知に一般的に使用される認知的タスクとの関連性を確認することである。
論文 参考訳(メタデータ) (2023-11-23T09:49:22Z) - PRIME: Prioritizing Interpretability in Failure Mode Extraction [49.93565079216376]
訓練された画像分類モデルにおいて、故障モードに対する人間の理解可能な記述を提供することの課題について検討する。
本稿では,この問題における解釈可能性を重視した新しい手法を提案する。
本手法は,障害モードの同定に成功し,それに関連する高品質なテキスト記述を生成する。
論文 参考訳(メタデータ) (2023-09-29T22:00:12Z) - Sensitivity, Performance, Robustness: Deconstructing the Effect of
Sociodemographic Prompting [64.80538055623842]
社会デマトグラフィープロンプトは、特定の社会デマトグラフィープロファイルを持つ人間が与える答えに向けて、プロンプトベースのモデルの出力を操縦する技術である。
ソシオデマトグラフィー情報はモデル予測に影響を及ぼし、主観的NLPタスクにおけるゼロショット学習を改善するのに有用であることを示す。
論文 参考訳(メタデータ) (2023-09-13T15:42:06Z) - How word semantics and phonology affect handwriting of Alzheimer's
patients: a machine learning based analysis [20.36565712578267]
本研究は,アルツハイマー病患者の手書き書字に意味論と音韻論がどのような影響を及ぼすかを検討した。
我々は、6つの手書き作業から得られたデータを用いて、それぞれが以下のカテゴリの1つに属する単語をコピーする必要がある。
実験の結果,特徴選択により,単語の種類ごとに異なる特徴セットを導出できることがわかった。
論文 参考訳(メタデータ) (2023-07-06T13:35:06Z) - Automated Systems For Diagnosis of Dysgraphia in Children: A Survey and
Novel Framework [2.326866956890798]
学習障害は主に読書、文章、数学などの基本的な学習スキルに干渉し、世界の子供の約10%に影響することが知られている。
神経発達障害としての運動能力の低下と運動調整は、書字の難しさの因果となりうる(図)
失読症の徴候や症状は、不規則な筆跡、筆記媒体の不適切な扱い、遅やかに書き直し、異常な手の位置などに限定されない。
論文 参考訳(メタデータ) (2022-06-27T04:44:34Z) - CogAlign: Learning to Align Textual Neural Representations to Cognitive
Language Processing Signals [60.921888445317705]
自然言語処理モデルに認知言語処理信号を統合するためのCogAlignアプローチを提案する。
我々は、CogAlignが、パブリックデータセット上の最先端モデルよりも、複数の認知機能で大幅な改善を実現していることを示す。
論文 参考訳(メタデータ) (2021-06-10T07:10:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。