論文の概要: Case Study of Novelty, Complexity, and Adaptation in a Multicellular System
- arxiv url: http://arxiv.org/abs/2405.07241v1
- Date: Sun, 12 May 2024 10:13:36 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 17:47:28.557760
- Title: Case Study of Novelty, Complexity, and Adaptation in a Multicellular System
- Title(参考訳): 多細胞系における新規性・複雑性・適応の事例研究
- Authors: Matthew Andres Moreno, Santiago Rodriguez Papa, Charles Ofria,
- Abstract要約: DISHTINYシミュレーションシステムを用いたケーススタディにおいて、新規性、複雑さ、適応の共進化を追究する。
定性的に異なる10個の多細胞形態を記述し、その一部は非対称な成長と異なる生活段階を示す。
私たちのケーススタディは、新奇性、複雑さ、適応の間に緩やかな(時には相違する)関係が存在することを示唆しています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continuing generation of novelty, complexity, and adaptation are well-established as core aspects of open-ended evolution. However, it has yet to be firmly established to what extent these phenomena are coupled and by what means they interact. In this work, we track the co-evolution of novelty, complexity, and adaptation in a case study from the DISHTINY simulation system, which is designed to study the evolution of digital multicellularity. In this case study, we describe ten qualitatively distinct multicellular morphologies, several of which exhibit asymmetrical growth and distinct life stages. We contextualize the evolutionary history of these morphologies with measurements of complexity and adaptation. Our case study suggests a loose -- sometimes divergent -- relationship can exist among novelty, complexity, and adaptation.
- Abstract(参考訳): 新規性、複雑さ、適応の継続的な生成は、オープンエンド進化の中核的な側面として確立されている。
しかし、これらの現象がどの程度結合し、どのような意味によって相互作用するかは、まだ確定していない。
本研究では,デジタル多細胞性の進化を研究するために設計されたdisHTINYシミュレーションシステムを用いて,新規性,複雑性,適応の共進化を事例として追跡する。
本症例では, 定性的に異なる10種類の多細胞形態を記述し, そのうちのいくつかは非対称な成長と異なる生活段階を示す。
我々は、これらの形態学の進化史を複雑さと適応度の測定で文脈化する。
我々のケーススタディは、新奇性、複雑さ、適応の間に緩やかな(時には相違する)関係が存在することを示唆している。
関連論文リスト
- Toward Artificial Open-Ended Evolution within Lenia using Quality-Diversity [5.380545611878407]
複雑なシステムにおける多種多様な自己組織化パターンの自動発見には,品質多様性が有効であることを示す。
我々のフレームワークは、Leniabreederと呼ばれ、手動で定義された多様性基準と教師なしの多様性尺度の両方を利用して、発見可能なパターンの範囲を広げることができる。
論文 参考訳(メタデータ) (2024-06-06T16:35:27Z) - Cognitive Evolutionary Learning to Select Feature Interactions for Recommender Systems [59.117526206317116]
Cellはさまざまなタスクやデータに対して,さまざまなモデルに適応的に進化可能であることを示す。
4つの実世界のデータセットの実験では、細胞は最先端のベースラインを大幅に上回っている。
論文 参考訳(メタデータ) (2024-05-29T02:35:23Z) - Learning to Predict Mutation Effects of Protein-Protein Interactions by Microenvironment-aware Hierarchical Prompt Learning [78.38442423223832]
我々は、新しいコードブック事前学習タスク、すなわちマスク付きマイクロ環境モデリングを開発する。
突然変異効果予測において、最先端の事前学習法よりも優れた性能と訓練効率を示す。
論文 参考訳(メタデータ) (2024-05-16T03:53:21Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - Role of Morphogenetic Competency on Evolution [0.0]
進化計算において、逆関係(進化に関する知性の影響)は、生物レベルの振る舞いの観点からアプローチされる。
我々は、解剖学的形態空間をナビゲートするシステムの最小限のモデルの知性に焦点を当てる。
我々はシリコの標準遺伝アルゴリズムを用いて人工胚の個体群を進化させた。
論文 参考訳(メタデータ) (2023-10-13T11:58:18Z) - Learning and evolution: factors influencing an effective combination [0.0]
進化と学習の相互関係は、人工知能と神経進化のコミュニティの間で議論の的になっている。
著者らは、学習と進化を組み合わせることで、進化だけで発見されたものよりも優れた解を見つけることができるかどうかを調査する。
論文 参考訳(メタデータ) (2023-06-20T09:03:52Z) - The scaling of goals via homeostasis: an evolutionary simulation,
experiment and analysis [0.0]
本研究では, 形態形成過程における細胞の集合的知能を, ホメオスタティックプロセスの中心における目標状態をスケールアップすることによって, 行動知能に転換することを提案する。
これらの創発性形態形成因子は、その標的形態学を達成するために応力伝播ダイナミクスの使用を含む、多くの予測された特徴を示す。
本研究では, 進化が最小目標指向行動(ホメオスタティックループ)をどのように高次問題解決剤に拡大するかを, 定量的に把握するための第一歩として提案する。
論文 参考訳(メタデータ) (2022-11-15T21:48:44Z) - Complex Evolutional Pattern Learning for Temporal Knowledge Graph
Reasoning [60.94357727688448]
TKG推論は、歴史的KG配列を考えると、将来の潜在的な事実を予測することを目的としている。
進化のパターンは、長さの多様性と時間変化の2つの側面において複雑である。
本稿では,CEN(Complex Evolutional Network)と呼ばれる新しいモデルを提案する。CNN(Convolutional Neural Network)を用いて,長さの異なる進化パターンを扱う。
論文 参考訳(メタデータ) (2022-03-15T11:02:55Z) - Epigenetic evolution of deep convolutional models [81.21462458089142]
我々は、より深い畳み込みモデルを進化させるために、これまで提案されていた神経進化の枠組みを構築した。
異なる形状と大きさのカーネルを同一層内に共存させる畳み込み層配置を提案する。
提案したレイアウトにより、畳み込み層内の個々のカーネルのサイズと形状を、対応する新しい突然変異演算子で進化させることができる。
論文 参考訳(メタデータ) (2021-04-12T12:45:16Z) - Embodied Intelligence via Learning and Evolution [92.26791530545479]
環境の複雑さが形態学的知能の進化を促進することを示す。
また、進化は速く学習する形態を素早く選択することを示した。
我々の実験は、ボールドウィン効果とモルフォロジーインテリジェンスの発生の両方の力学的基礎を示唆している。
論文 参考訳(メタデータ) (2021-02-03T18:58:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。