論文の概要: Semantic Loss Functions for Neuro-Symbolic Structured Prediction
- arxiv url: http://arxiv.org/abs/2405.07387v1
- Date: Sun, 12 May 2024 22:18:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 15:14:45.284466
- Title: Semantic Loss Functions for Neuro-Symbolic Structured Prediction
- Title(参考訳): 神経・筋肉構造予測のための意味的損失関数
- Authors: Kareem Ahmed, Stefano Teso, Paolo Morettin, Luca Di Liello, Pierfrancesco Ardino, Jacopo Gobbi, Yitao Liang, Eric Wang, Kai-Wei Chang, Andrea Passerini, Guy Van den Broeck,
- Abstract要約: このような構造に関する知識を象徴的に定義した意味的損失をトレーニングに注入する。
記号の配置に非依存であり、それによって表現される意味論にのみ依存する。
識別型ニューラルモデルと生成型ニューラルモデルの両方と組み合わせることができる。
- 参考スコア(独自算出の注目度): 74.18322585177832
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structured output prediction problems are ubiquitous in machine learning. The prominent approach leverages neural networks as powerful feature extractors, otherwise assuming the independence of the outputs. These outputs, however, jointly encode an object, e.g. a path in a graph, and are therefore related through the structure underlying the output space. We discuss the semantic loss, which injects knowledge about such structure, defined symbolically, into training by minimizing the network's violation of such dependencies, steering the network towards predicting distributions satisfying the underlying structure. At the same time, it is agnostic to the arrangement of the symbols, and depends only on the semantics expressed thereby, while also enabling efficient end-to-end training and inference. We also discuss key improvements and applications of the semantic loss. One limitations of the semantic loss is that it does not exploit the association of every data point with certain features certifying its membership in a target class. We should therefore prefer minimum-entropy distributions over valid structures, which we obtain by additionally minimizing the neuro-symbolic entropy. We empirically demonstrate the benefits of this more refined formulation. Moreover, the semantic loss is designed to be modular and can be combined with both discriminative and generative neural models. This is illustrated by integrating it into generative adversarial networks, yielding constrained adversarial networks, a novel class of deep generative models able to efficiently synthesize complex objects obeying the structure of the underlying domain.
- Abstract(参考訳): 構造化出力予測問題は機械学習においてユビキタスである。
顕著なアプローチは、ニューラルネットワークを強力な特徴抽出器として利用し、そうでなければ出力の独立性を仮定する。
しかしながら、これらの出力は、グラフ内のパスを例に、オブジェクトを共同で符号化するので、出力空間の基盤となる構造を通して関連付けられる。
このような構造に関する知識を象徴的に定義したセマンティックロスを,ネットワークの依存性の侵害を最小限に抑え,ネットワークを基盤構造を満たす分布の予測に向けて制御することにより,トレーニングに投入する意味損失について議論する。
同時に、シンボルの配置に非依存であり、それによって表現されるセマンティクスにのみ依存すると同時に、効率的なエンドツーエンドのトレーニングと推論を可能にしている。
また、セマンティックロスの重要な改善と応用についても論じる。
セマンティックな損失の1つの制限は、ターゲットクラスのメンバシップを認証する特定の特徴を持つすべてのデータポイントの関連を利用していないことである。
したがって, 有効構造よりも最小エントロピー分布を優先すべきであり, ニューロシンボリックエントロピーを最小化することによって得られる。
このより洗練された定式化の利点を実証的に実証する。
さらに、セマンティックロスはモジュラーとして設計されており、識別と生成の両方のニューラルモデルと組み合わせることができる。
これは、基底領域の構造に従う複雑なオブジェクトを効率的に合成できる新しい種類の深層生成モデルである、制約付き対向ネットワークを生成することによって、これを生成的対向ネットワークに統合することによって説明される。
関連論文リスト
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Using Degeneracy in the Loss Landscape for Mechanistic Interpretability [0.0]
機械的解釈可能性(Mechanistic Interpretability)は、ニューラルネットワークによって実装されたアルゴリズムを、その重みとアクティベーションを研究することによってリバースエンジニアリングすることを目的としている。
逆エンジニアリングニューラルネットワークの障害は、ネットワーク内の多くのパラメータが、ネットワークによって実装されている計算に関与していないことである。
論文 参考訳(メタデータ) (2024-05-17T17:26:33Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
ニューロシンボリックアプローチは一般に確率論的目的のファジィ近似を利用する。
トラクタブル回路において,これを効率的に計算する方法を示す。
我々は,Warcraftにおける最小コストパスの予測,最小コスト完全マッチングの予測,スドクパズルの解法という3つの課題に対して,アプローチを検証した。
論文 参考訳(メタデータ) (2023-02-28T00:04:22Z) - Isometric Representations in Neural Networks Improve Robustness [0.0]
我々は、クラス内メートル法構造を同時に維持しながら分類を行うためにニューラルネットワークを訓練する。
我々は、等尺正則化がMNISTに対する敵攻撃に対する堅牢性を改善することを検証する。
論文 参考訳(メタデータ) (2022-11-02T16:18:18Z) - Interpretable part-whole hierarchies and conceptual-semantic
relationships in neural networks [4.153804257347222]
本稿では、視覚的手がかりから部分全体階層を表現できるフレームワークであるAgglomeratorについて述べる。
本研究では,SmallNORB,MNIST,FashionMNIST,CIFAR-10,CIFAR-100などの共通データセットを用いて評価を行った。
論文 参考訳(メタデータ) (2022-03-07T10:56:13Z) - Modeling Structure with Undirected Neural Networks [20.506232306308977]
任意の順序で実行できる計算を指定するためのフレキシブルなフレームワークである、非指向型ニューラルネットワークを提案する。
さまざまなタスクにおいて、非構造的かつ構造化された非指向型ニューラルアーキテクチャの有効性を実証する。
論文 参考訳(メタデータ) (2022-02-08T10:06:51Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Towards Efficient Scene Understanding via Squeeze Reasoning [71.1139549949694]
我々はSqueeze Reasoningと呼ばれる新しいフレームワークを提案する。
空間地図上の情報を伝播するのではなく、まず入力特徴をチャネルワイドなグローバルベクトルに絞ることを学ぶ。
提案手法はエンドツーエンドのトレーニングブロックとしてモジュール化可能であり,既存のネットワークに簡単に接続可能であることを示す。
論文 参考訳(メタデータ) (2020-11-06T12:17:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。