論文の概要: RESTAD: REconstruction and Similarity based Transformer for time series Anomaly Detection
- arxiv url: http://arxiv.org/abs/2405.07509v1
- Date: Mon, 13 May 2024 07:10:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 14:34:42.548045
- Title: RESTAD: REconstruction and Similarity based Transformer for time series Anomaly Detection
- Title(参考訳): RESTAD: 時系列異常検出のための再構成と類似性に基づく変換器
- Authors: Ramin Ghorbani, Marcel J. T. Reinders, David M. J. Tax,
- Abstract要約: 時系列データの異常検出は、様々な領域で重要である。
アーキテクチャに放射基底関数(RBF)の層を組み込むことにより、トランスフォーマーモデルの適応であるRESTADを導入する。
- 参考スコア(独自算出の注目度): 3.0377067713090633
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection in time series data is crucial across various domains. The scarcity of labeled data for such tasks has increased the attention towards unsupervised learning methods. These approaches, often relying solely on reconstruction error, typically fail to detect subtle anomalies in complex datasets. To address this, we introduce RESTAD, an adaptation of the Transformer model by incorporating a layer of Radial Basis Function (RBF) neurons within its architecture. This layer fits a non-parametric density in the latent representation, such that a high RBF output indicates similarity with predominantly normal training data. RESTAD integrates the RBF similarity scores with the reconstruction errors to increase sensitivity to anomalies. Our empirical evaluations demonstrate that RESTAD outperforms various established baselines across multiple benchmark datasets.
- Abstract(参考訳): 時系列データの異常検出は、様々な領域で重要である。
このような課題に対するラベル付きデータの不足により,教師なし学習手法への注目が高まっている。
これらのアプローチは、しばしば再構成エラーにのみ依存するが、通常、複雑なデータセットの微妙な異常を検出するのに失敗する。
これを解決するために、アーキテクチャに放射基底関数(RBF)ニューロンの層を組み込むことにより、トランスフォーマーモデルの適応であるRESTADを導入する。
この層は遅延表現における非パラメトリック密度に適合し、高いRBF出力は、主に通常のトレーニングデータと類似性を示す。
RESTADはRBF類似度スコアと再構成エラーを統合し、異常に対する感度を高める。
実証的な評価では、RESTADは複数のベンチマークデータセットで、さまざまな確立されたベースラインよりも優れています。
関連論文リスト
- TSINR: Capturing Temporal Continuity via Implicit Neural Representations for Time Series Anomaly Detection [22.367552254229665]
時系列異常検出は、データの異常なパターンや、システムの期待する振る舞いからの逸脱を特定することを目的としている。
このタスクでは、教師なし学習を通じてポイントワイド表現を学習するリコンストラクションベースの手法が主流である。
本稿では,暗黙的ニューラル表現(INR)再構成に基づく時系列異常検出手法TSINRを提案する。
論文 参考訳(メタデータ) (2024-11-18T15:19:54Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - DACR: Distribution-Augmented Contrastive Reconstruction for Time-Series
Anomaly Detection [12.3866167448478]
時系列データの異常検出は、さまざまなアプリケーションにわたる障害、障害、脅威、異常を識別するために不可欠である。
近年、このトピックにディープラーニング技術が適用されているが、現実のシナリオではしばしば苦労している。
本稿では,これらの課題に対処するため,DACR(Distributed-Augmented Contrastive Reconstruction)を提案する。
論文 参考訳(メタデータ) (2024-01-20T16:56:52Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
異常ラベルは時系列異常検出において従来の教師付きモデルを妨げる。
自己教師型学習のような様々なSOTA深層学習技術がこの問題に対処するために導入されている。
自己教師型3領域異常検出器(TriAD)を提案する。
論文 参考訳(メタデータ) (2023-11-19T05:37:18Z) - Spot The Odd One Out: Regularized Complete Cycle Consistent Anomaly Detector GAN [4.5123329001179275]
本研究では,GAN(Generative Adversarial Neural Network)のパワーを活用した,現実の応用における異常検出のための逆方向検出手法を提案する。
従来の手法は、あらゆる種類の異常に適用できないような、クラス単位での精度のばらつきに悩まされていた。
RCALADという手法は,この構造に新たな識別器を導入し,より効率的な学習プロセスを実現することで,この問題を解決しようとするものである。
論文 参考訳(メタデータ) (2023-04-16T13:05:39Z) - Diversity-Measurable Anomaly Detection [106.07413438216416]
本稿では,再構成の多様性を高めるため,DMAD(Diversity-Measurable Anomaly Detection)フレームワークを提案する。
PDMは基本的に、変形を埋め込みから分離し、最終的な異常スコアをより信頼性を高める。
論文 参考訳(メタデータ) (2023-03-09T05:52:42Z) - Exploring Invariant Representation for Visible-Infrared Person
Re-Identification [77.06940947765406]
異なるスペクトルを横断する歩行者にアイデンティティを関連付けることを目的とした、クロススペクトルの人物再識別は、モダリティの相違の主な課題に直面している。
本稿では、ロバスト機能マイニングネットワーク(RFM)と呼ばれるエンドツーエンドのハイブリッド学習フレームワークにおいて、画像レベルと特徴レベルの両方の問題に対処する。
RegDBとSYSU-MM01という2つの標準的なクロススペクトル人物識別データセットの実験結果により,最先端の性能が示された。
論文 参考訳(メタデータ) (2023-02-02T05:24:50Z) - ARES: Locally Adaptive Reconstruction-based Anomaly Scoring [25.707159917988733]
本研究では, 異常スコアリング関数が, 正常サンプルの範囲にわたる復元誤差の自然な変動に適応しないことを示す。
本稿では,適応的再構成誤りに基づくスコーリング手法を提案する。
論文 参考訳(メタデータ) (2022-06-15T15:35:12Z) - Reconstruct Anomaly to Normal: Adversarial Learned and Latent
Vector-constrained Autoencoder for Time-series Anomaly Detection [3.727524403726822]
時系列における異常検出は広く研究され、重要な実用的応用がなされている。
近年、異常検出アルゴリズムは、主にディープラーニング生成モデルに基づいており、再構成誤差を用いて異常を検出する。
本稿では,正規化に対する再構成異常の考え方に基づくRANを提案し,それを教師なし時系列異常検出に適用する。
論文 参考訳(メタデータ) (2020-10-14T07:10:55Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。