論文の概要: Optimizing Class-Level Probability Reweighting Coefficients for Equitable Prompting Accuracy
- arxiv url: http://arxiv.org/abs/2405.07623v8
- Date: Tue, 12 Aug 2025 14:44:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-13 18:56:18.522826
- Title: Optimizing Class-Level Probability Reweighting Coefficients for Equitable Prompting Accuracy
- Title(参考訳): 等価プロンプティング精度のためのクラスレベル確率再重み付け係数の最適化
- Authors: Ruixi Lin, Yang You,
- Abstract要約: LLMは、事前訓練されたデータの統計正則性からのバイアスをしばしば発見する。
これは、分類とQAにおいて、永続的で不均一なクラス精度をもたらす。
本研究では,非微分不可能な性能駆動メトリクスを直接最適化するポストホック確率再重み付け手法を開発した。
- 参考スコア(独自算出の注目度): 12.287692969438169
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Even as we engineer LLMs for alignment and safety, they often uncover biases from pre-training data's statistical regularities (from disproportionate co-occurrences to stereotypical associations mirroring human cognitive biases). This leads to persistent, uneven class accuracy in classification and QA. Such per-class accuracy disparities are not inherently resolved by architectural/training evolutions or data scaling, making post-hoc correction essential for equitable performance. To mitigate LLM class accuracy imbalance, we develop a post-hoc probability reweighting method that directly optimizes for non-differentiable performance-driven and fairness-aligned metrics, through a novel COBias metric that highlights disparities in class accuracies. This post-hoc bias mitigation method is grounded in discrete optimization with nonlinear integer programming (NIP) objectives and an efficient metaheuristic solution framework with theoretical convergence guarantees. Operating model-agnostically, it learns reweighting coefficients from output class probabilities to adjust LLM inference outputs without internal weight updates. Evaluations demonstrate its effectiveness: reducing COBias (61% relative reduction), increasing overall accuracy (18% relative increase), and achieving robust within-task generalization across diverse prompt configurations.
- Abstract(参考訳): LLMをアライメントと安全性のために設計したとしても、トレーニング前のデータの統計正則性(不均等な共起から、人間の認知バイアスを反映するステレオタイプ的関連性)からバイアスを明らかにすることがしばしばあります。
これは、分類とQAにおいて、永続的で不均一なクラス精度をもたらす。
このようなクラスごとの精度の相違は、アーキテクチャ/トレーニングの進化やデータのスケーリングによって本質的には解決されない。
LLMの精度不均衡を軽減するために,クラス精度の相違を強調する新しいCOBiasメトリックを用いて,微分不可能な性能駆動および公平性整合性メトリクスを直接最適化するポストホック確率再重み付け手法を開発した。
このポストホックバイアス緩和法は、非線形整数計画(NIP)の目的と、理論収束保証を伴う効率的なメタヒューリスティック解の枠組みで離散的に最適化されている。
モデル非依存で、出力クラス確率から再重み付け係数を学習し、内部重み付け更新なしでLPM推論出力を調整する。
COBiasの削減(61%の相対減少)、全体的な精度の向上(18%の相対増加)、多様なプロンプト構成で堅牢なタスク内一般化を実現すること。
関連論文リスト
- Ensemble Debiasing Across Class and Sample Levels for Fairer Prompting Accuracy [17.610305828703957]
言語モデルは、強力な数発の学習者であり、テキスト分類タスクにおいて、全体的な精度が良好である。
我々は、全体的な精度の追求は、強い階級を豊かにするだけでなく、弱い階級を育てることによってもたらされると信じている。
本論文では,文脈内学習クラス確率のフレキシブルな修正を可能にするHeaviside Step関数に基づくアンサンブルデバイアス法を提案する。
論文 参考訳(メタデータ) (2025-03-07T05:34:31Z) - S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
S$2$Rはモデルに推論時の自己検証と自己正当性を教えることによってLLM推論を強化する効率的なフレームワークである。
以上の結果から,Qwen2.5-math-7Bの精度は51.0%から81.6%に向上した。
論文 参考訳(メタデータ) (2025-02-18T13:40:22Z) - Let the Fuzzy Rule Speak: Enhancing In-context Learning Debiasing with Interpretability [12.287692969438169]
大規模言語モデル(LLM)は、テキスト分類タスクにおいて、文脈内学習(ICL)を用いたバランスの取れたクラス精度に苦慮することが多い。
本稿では、クラス精度の不均衡問題を深く掘り下げ、あるクラスが不均等に高いICL確率を常に受けているため、それが生じることを確かめる。
本稿では,サンプルレベルのクラス確率補正手法であるFuRudを紹介する。
論文 参考訳(メタデータ) (2024-12-26T01:56:42Z) - Covariance-corrected Whitening Alleviates Network Degeneration on Imbalanced Classification [6.197116272789107]
クラス不均衡は画像分類において重要な問題であり、深層認識モデルの性能に大きな影響を及ぼす。
我々は、退化ソリューションを緩和するWhitening-Netと呼ばれる新しいフレームワークを提案する。
極端なクラス不均衡のシナリオでは、バッチ共分散統計は大きな変動を示し、白化操作の収束を妨げる。
論文 参考訳(メタデータ) (2024-08-30T10:49:33Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
モデル性能はトレーニングデータの圧縮比と負の相関関係にあり,トレーニング損失が小さくなるのが普通である。
エントロピー法則の知見に基づいて, 極めて効率的で普遍的なデータ選択法を提案する。
また,モデルトレーニング開始時の潜在的な性能リスクを検出するエントロピー法則の興味深い応用を提案する。
論文 参考訳(メタデータ) (2024-07-09T08:14:29Z) - Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
異なるタスクシナリオのモデルアライメントを改善するために,不確実性認識学習(UAL)を提案する。
トレーニングのラベルの平滑化値を個々のサンプルの不確実性に応じて適応的に設定する。
広く使われているベンチマーク実験では、我々のUALは標準教師あり微調整よりも著しく優れています。
論文 参考訳(メタデータ) (2024-06-07T11:37:45Z) - Preference Learning Algorithms Do Not Learn Preference Rankings [62.335733662381884]
選好学習は、好ましくない出力よりも、好ましくない出力により高い確率を割り当てるようにモデルを訓練する、という従来の知恵を考察する。
多くの最先端の選好調整モデルでは、一般的な選好データセットでは60%未満のランキング精度が得られている。
論文 参考訳(メタデータ) (2024-05-29T21:29:44Z) - Teacher-Student Training for Debiasing: General Permutation Debiasing for Large Language Models [39.82130327284791]
大規模言語モデル(LLM)は、NLPタスクにおいて、印象的なゼロショット機能と汎用性を実証している。
特定のタスクに対して重要な不変性を維持するのに失敗することもある。
本稿では, 推定時の非効率性について述べる。
論文 参考訳(メタデータ) (2024-03-20T13:38:07Z) - Prompt-Based Bias Calibration for Better Zero/Few-Shot Learning of Language Models [7.089534153472173]
事前学習された言語モデルに符号化された固有バイアスを校正するヌルインプットプロンプト法を提案する。
本手法は,テキスト内学習とプロンプトベースファインタニングの両方において,LMのゼロ/ファインショット学習性能を大幅に向上させる。
論文 参考訳(メタデータ) (2024-02-15T22:54:24Z) - A Hard-to-Beat Baseline for Training-free CLIP-based Adaptation [121.0693322732454]
対照的に、CLIP(Contrastive Language- Image Pretraining)はその目覚ましいゼロショット能力で人気を集めている。
近年の研究では、下流タスクにおけるCLIPの性能を高めるための効率的な微調整手法の開発に焦点が当てられている。
従来のアルゴリズムであるガウス判別分析(GDA)を再検討し,CLIPの下流分類に適用する。
論文 参考訳(メタデータ) (2024-02-06T15:45:27Z) - Understanding the Detrimental Class-level Effects of Data Augmentation [63.1733767714073]
最適な平均精度を達成するには、ImageNetで最大20%の個々のクラスの精度を著しく損なうコストがかかる。
本稿では,DAがクラスレベルの学習力学とどのように相互作用するかを理解するためのフレームワークを提案する。
そこで本研究では, クラス条件拡張戦略により, 負の影響を受けるクラスの性能が向上することを示す。
論文 参考訳(メタデータ) (2023-12-07T18:37:43Z) - Online Continual Learning via Logit Adjusted Softmax [24.327176079085703]
訓練中のクラス間の不均衡は、忘れる主な原因として特定されている。
トレーニング中のモデルロジットの簡単な調整は、事前クラスバイアスに効果的に抵抗することができる。
提案手法であるLogit Adjusted Softmaxは,クラス増分だけでなく,現実的な一般設定においても,クラス間不均衡の影響を軽減することができる。
論文 参考訳(メタデータ) (2023-11-11T03:03:33Z) - Fine-tune Language Models to Approximate Unbiased In-context Learning [8.609157988755896]
RICL(Reweighted In-context Learning)と呼ばれる再重み付きアルゴリズムを導入する。
このアルゴリズムは、各入力出力サンプルの最適な重みを決定するために、バイアスのない検証セットを使用して言語モデルを微調整する。
また、LARICLと呼ばれる線形最適重み近似アルゴリズムである、低コスト再重み付きアルゴリズムも導入する。
論文 参考訳(メタデータ) (2023-10-05T06:16:01Z) - Semi-Supervised Learning with Multiple Imputations on Non-Random Missing
Labels [0.0]
Semi-Supervised Learning (SSL)は、ラベル付きデータとラベルなしデータの両方でアルゴリズムがトレーニングされるときに実装される。
本稿では,より高精度でバイアスの少ない複数の計算モデルを組み合わせるための2つの新しい手法を提案する。
論文 参考訳(メタデータ) (2023-08-15T04:09:53Z) - Exploring Vision-Language Models for Imbalanced Learning [29.235472353759388]
対照的な言語画像事前学習を用いた視覚言語モデル(VLM)は、ゼロショット分類性能が有望であることを示す。
本研究では,大容量データによって事前学習されたVLMに対して,不均衡学習アルゴリズムが重要であることを明らかにする。
論文 参考訳(メタデータ) (2023-04-04T01:56:16Z) - CLIPood: Generalizing CLIP to Out-of-Distributions [73.86353105017076]
対照的に、CLIP(Language-image Pre-training)モデルでは、印象的なゼロショット能力を示しているが、下流タスクにおけるCLIPのさらなる適応は、OODのパフォーマンスを好ましくない劣化させる。
ドメインシフトとオープンクラスの両方が見えないテストデータ上で発生する可能性があるOOD状況にCLIPモデルを適用するための微調整手法であるCLIPoodを提案する。
さまざまなOODシナリオによるさまざまなデータセットの実験は、CLIPoodが既存の一般化テクニックを一貫して上回っていることを示している。
論文 参考訳(メタデータ) (2023-02-02T04:27:54Z) - Deep Negative Correlation Classification [82.45045814842595]
既存のディープアンサンブル手法は、多くの異なるモデルをナビゲートし、予測を集約する。
深部負相関分類(DNCC)を提案する。
DNCCは、個々の推定器が正確かつ負の相関を持つ深い分類アンサンブルを生成する。
論文 参考訳(メタデータ) (2022-12-14T07:35:20Z) - An Embarrassingly Simple Baseline for Imbalanced Semi-Supervised
Learning [103.65758569417702]
半教師付き学習(SSL)は、ラベルのないデータを活用してモデルのパフォーマンスを向上させるという大きな約束を示している。
我々は、ラベル付きデータとラベルなしデータの両方で不均衡なクラス分散が発生する不均衡SSLという、より現実的で困難な設定について検討する。
我々は、ラベル付きデータを擬似ラベルで単純に補うことで、データの不均衡に取り組む単純なベースライン、SimiSについて研究する。
論文 参考訳(メタデータ) (2022-11-20T21:18:41Z) - Oracle Inequalities for Model Selection in Offline Reinforcement
Learning [105.74139523696284]
本稿では,値関数近似を用いたオフラインRLにおけるモデル選択の問題について検討する。
対数係数まで最小値の速度-最適不等式を実現するオフラインRLの最初のモデル選択アルゴリズムを提案する。
そこで本研究では,優れたモデルクラスを確実に選択できることを示す数値シミュレーションを行った。
論文 参考訳(メタデータ) (2022-11-03T17:32:34Z) - Fairly Accurate: Learning Optimal Accuracy vs. Fairness Tradeoffs for
Hate Speech Detection [8.841221697099687]
本稿では,モデルトレーニングにおけるグループフェアネスの直接最適化を可能にする,微分可能な尺度を提案する。
ヘイトスピーチ検出の特定のタスクについて,本手法の評価を行った。
畳み込み、シーケンシャル、トランスフォーマーに基づくニューラルネットワークによる実験結果は、事前の作業よりも経験的精度が優れている。
論文 参考訳(メタデータ) (2022-04-15T22:11:25Z) - A Gating Model for Bias Calibration in Generalized Zero-shot Learning [18.32369721322249]
汎用ゼロショット学習(GZSL)は,補助情報のみを用いることで,見つからないクラスデータに一般化できるモデルを訓練することを目的とする。
GZSLの主な課題の1つは、トレーニング中に利用可能なクラスデータのみに過度に適合することに起因する、見かけたクラスに対するバイアス付きモデル予測である。
GZSLのための2ストリームオートエンコーダに基づくゲーティングモデルを提案する。
論文 参考訳(メタデータ) (2022-03-08T16:41:06Z) - The Interplay between Distribution Parameters and the
Accuracy-Robustness Tradeoff in Classification [0.0]
アドリラルトレーニングは、通常のモデルに比べて自然(未成熟)の例では正確でないモデルをもたらす傾向にある。
これは、アルゴリズムの欠点か、トレーニングデータ分散の基本的な性質によるものとみなすことができる。
本研究では,二進ガウス混合分類問題の下で後者のケースに焦点をあてる。
論文 参考訳(メタデータ) (2021-07-01T06:57:50Z) - PLM: Partial Label Masking for Imbalanced Multi-label Classification [59.68444804243782]
長いラベルの分布を持つ実世界のデータセットで訓練されたニューラルネットワークは、頻繁なクラスに偏りがあり、頻繁なクラスでは不十分である。
本稿では,この比率を利用したPLM(Partial Label Masking)を提案する。
本手法は,マルチラベル (MultiMNIST と MSCOCO) とシングルラベル (CIFAR-10 と CIFAR-100) の2つの画像分類データセットにおいて,既存の手法と比較して高い性能を実現する。
論文 参考訳(メタデータ) (2021-05-22T18:07:56Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
このようなシナリオにおけるキャリブレーションとパフォーマンスを改善する2つの方法を提案します。
異なるサンプルによるデータセットバイアスに対して,シフトバッチ正規化を提案する。
提案手法は,複数の長尾認識ベンチマークデータセットに新しいレコードをセットする。
論文 参考訳(メタデータ) (2021-04-01T13:55:21Z) - Generalized Zero-Shot Learning Via Over-Complete Distribution [79.5140590952889]
そこで本稿では,CVAE (Conditional Variational Autoencoder) を用いたOCD(Over-Complete Distribution) の生成を提案する。
フレームワークの有効性は,Zero-Shot LearningプロトコルとGeneralized Zero-Shot Learningプロトコルの両方を用いて評価する。
論文 参考訳(メタデータ) (2020-04-01T19:05:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。