論文の概要: Neural Network Compression for Reinforcement Learning Tasks
- arxiv url: http://arxiv.org/abs/2405.07748v1
- Date: Mon, 13 May 2024 13:46:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 13:35:36.247293
- Title: Neural Network Compression for Reinforcement Learning Tasks
- Title(参考訳): 強化学習課題のためのニューラルネットワーク圧縮
- Authors: Dmitry A. Ivanov, Denis A. Larionov, Oleg V. Maslennikov, Vladimir V. Voevodin,
- Abstract要約: ロボット工学などの強化学習(RL)の実応用では、低レイテンシとエネルギー効率の推論が非常に望ましい。
ニューラルネット推論の最適化、特にエネルギーと遅延効率を改善するために、スパーシリティとプルーニングを使用することは、標準的なテクニックである。
本研究では、異なるRL環境におけるRLアルゴリズムに対するこれらの最適化手法の適用を系統的に検討し、ニューラルネットワークのサイズを最大400倍に削減する。
- 参考スコア(独自算出の注目度): 1.0124625066746595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In real applications of Reinforcement Learning (RL), such as robotics, low latency and energy efficient inference is very desired. The use of sparsity and pruning for optimizing Neural Network inference, and particularly to improve energy and latency efficiency, is a standard technique. In this work, we perform a systematic investigation of applying these optimization techniques for different RL algorithms in different RL environments, yielding up to a 400-fold reduction in the size of neural networks.
- Abstract(参考訳): ロボット工学などの強化学習(RL)の実応用では、低レイテンシとエネルギー効率の推論が非常に望ましい。
ニューラルネット推論の最適化、特にエネルギーと遅延効率を改善するために、スパーシリティとプルーニングを使用することは、標準的なテクニックである。
本研究では、異なるRL環境におけるRLアルゴリズムに対するこれらの最適化手法の適用を系統的に検討し、ニューラルネットワークのサイズを最大400倍に削減する。
関連論文リスト
- Trapezoidal Gradient Descent for Effective Reinforcement Learning in Spiking Networks [10.422381897413263]
低消費電力特性と性能を持つスパイキングニューラルネットワーク(SNN)が注目を集めている。
強化学習の実践的応用の省エネを図るため,Pop-SAN と MDC-SAN のアルゴリズムが提案されている。
本稿では,スパイクネットワークの代替として,従来の安定した学習状態を保ちつつ,様々な信号力学下でのモデルの適応性と応答感度を高めることを目的とした,台形近似勾配法を提案する。
論文 参考訳(メタデータ) (2024-06-19T13:56:22Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - Properties and Potential Applications of Random Functional-Linked Types
of Neural Networks [81.56822938033119]
ランダム関数リンクニューラルネットワーク(RFLNN)は、深い構造を学習する別の方法を提供する。
本稿では周波数領域の観点からRFLNNの特性について考察する。
本稿では,より優れた性能でBLSネットワークを生成する手法を提案し,ポゾン方程式を解くための効率的なアルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-04-03T13:25:22Z) - A Low Latency Adaptive Coding Spiking Framework for Deep Reinforcement Learning [27.558298367330053]
本稿では,学習可能な行列乗法を用いてスパイクのエンコードとデコードを行い,コーダの柔軟性を向上させる。
直接学習法を用いてSNNを訓練し、オンラインとオフラインのRLアルゴリズムに2つの異なる構造を用いる。
実験の結果,超低レイテンシで最適性能を実現し,エネルギー効率に優れることがわかった。
論文 参考訳(メタデータ) (2022-11-21T07:26:56Z) - Single-Shot Pruning for Offline Reinforcement Learning [47.886329599997474]
深層強化学習(Deep Reinforcement Learning, RL)は、複雑な現実世界の問題を解決するための強力なフレームワークである。
この問題に対処するひとつの方法は、必要なパラメータだけを残したニューラルネットワークをプルークすることです。
我々は,RLと単発プルーニングのギャップを埋め,オフラインRLに対する一般的なプルーニング手法を提案する。
論文 参考訳(メタデータ) (2021-12-31T18:10:02Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
本稿では,Deep Reinforcement Learning(DRL)に基づくハイブリッド配置ソリューションと,Power of Two Choices原則に基づく専用最適化を提案する。
提案したHuristically-Assisted DRL (HA-DRL) は,他の最先端手法と比較して学習プロセスの高速化と資源利用の促進を可能にする。
論文 参考訳(メタデータ) (2021-05-14T10:04:17Z) - Ps and Qs: Quantization-aware pruning for efficient low latency neural
network inference [56.24109486973292]
超低遅延アプリケーションのためのニューラルネットワークのトレーニング中の分級と量子化の相互作用を研究します。
量子化アウェアプルーニングは,タスクのプルーニングや量子化のみよりも計算効率のよいモデルであることが判明した。
論文 参考訳(メタデータ) (2021-02-22T19:00:05Z) - Sparsity in Deep Learning: Pruning and growth for efficient inference
and training in neural networks [78.47459801017959]
Sparsityは、モバイル機器に適合する通常のネットワークのメモリフットプリントを減らすことができる。
ニューラルネットワークの要素を除去および追加するためのアプローチ、モデルの疎性を達成するための異なるトレーニング戦略、実際に疎性を利用するメカニズムについて説明する。
論文 参考訳(メタデータ) (2021-01-31T22:48:50Z) - ALF: Autoencoder-based Low-rank Filter-sharing for Efficient
Convolutional Neural Networks [63.91384986073851]
オートエンコーダを用いた低ランクフィルタ共有技術(ALF)を提案する。
ALFは、ネットワークパラメータの70%、オペレーションの61%、実行時間の41%を削減し、精度の低下を最小限にしている。
論文 参考訳(メタデータ) (2020-07-27T09:01:22Z) - Using Generative Adversarial Nets on Atari Games for Feature Extraction
in Deep Reinforcement Learning [0.76146285961466]
Deep Reinforcement Learning (DRL)は、ロボットナビゲーションやビデオゲームの自動プレイなど、いくつかの研究領域で成功している。
この要件の主な理由は、疎結合で遅延した報酬が、ディープニューラルネットワークの表現学習に効果的な監督を提供していないことである。
本研究では,PPOアルゴリズムをGAN(Generative Adrial Networks)で拡張し,ネットワークを介さずに効率的な表現を学習させることにより,サンプル効率を向上させる。
論文 参考訳(メタデータ) (2020-04-06T15:46:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。