Is Interpretable Machine Learning Effective at Feature Selection for Neural Learning-to-Rank?
- URL: http://arxiv.org/abs/2405.07782v1
- Date: Mon, 13 May 2024 14:26:29 GMT
- Title: Is Interpretable Machine Learning Effective at Feature Selection for Neural Learning-to-Rank?
- Authors: Lijun Lyu, Nirmal Roy, Harrie Oosterhuis, Avishek Anand,
- Abstract summary: Neural ranking models have become increasingly popular for real-world search and recommendation systems.
Unlike their tree-based counterparts, neural models are much less interpretable.
This is particularly disadvantageous since interpretability is highly important for real-world systems.
- Score: 15.757181795925336
- License:
- Abstract: Neural ranking models have become increasingly popular for real-world search and recommendation systems in recent years. Unlike their tree-based counterparts, neural models are much less interpretable. That is, it is very difficult to understand their inner workings and answer questions like how do they make their ranking decisions? or what document features do they find important? This is particularly disadvantageous since interpretability is highly important for real-world systems. In this work, we explore feature selection for neural learning-to-rank (LTR). In particular, we investigate six widely-used methods from the field of interpretable machine learning (ML) and introduce our own modification, to select the input features that are most important to the ranking behavior. To understand whether these methods are useful for practitioners, we further study whether they contribute to efficiency enhancement. Our experimental results reveal a large feature redundancy in several LTR benchmarks: the local selection method TabNet can achieve optimal ranking performance with less than 10 features; the global methods, particularly our G-L2X, require slightly more selected features, but exhibit higher potential in improving efficiency. We hope that our analysis of these feature selection methods will bring the fields of interpretable ML and LTR closer together.
Related papers
- Data-Centric Human Preference Optimization with Rationales [23.243583332894737]
Reinforcement learning from human feedback plays a crucial role in aligning language models towards human preferences.
This work shifts focus to improving preference learning through a data-centric approach.
We propose enriching existing preference datasets with machine-generated rationales that explain the reasons behind choices.
arXiv Detail & Related papers (2024-07-19T17:27:52Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
Large language models (LLMs) are capable of selecting the most predictive features, with performance rivaling the standard tools of data science.
Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place.
arXiv Detail & Related papers (2024-07-02T22:23:40Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
Click-through rate (CTR) prediction, whose goal is to predict the probability of the user to click on an item, has become increasingly significant in recommender systems.
Recent deep learning models with the ability to automatically extract the user interest from his/her behaviors have achieved great success.
We propose a novel approach under the framework of the wrapper method, which is named Meta-Wrapper.
arXiv Detail & Related papers (2022-06-28T03:28:15Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
We propose a fast unsupervised feature selection method, named as, Compactness Score (CSUFS) to select desired features.
Our proposed algorithm seems to be more accurate and efficient compared with existing algorithms.
arXiv Detail & Related papers (2022-01-31T13:01:37Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Feature Importance Ranking for Deep Learning [7.287652818214449]
We propose a novel dual-net architecture consisting of operator and selector for discovery of an optimal feature subset of a fixed size.
During learning, the operator is trained for a supervised learning task via optimal feature subset candidates generated by the selector.
In deployment, the selector generates an optimal feature subset and ranks feature importance, while the operator makes predictions based on the optimal subset for test data.
arXiv Detail & Related papers (2020-10-18T12:20:27Z) - Automated Human Activity Recognition by Colliding Bodies
Optimization-based Optimal Feature Selection with Recurrent Neural Network [0.0]
Human Activity Recognition (HAR) is considered to be an efficient model in pervasive computation from sensor readings.
This paper tempts to implement the HAR system using deep learning with the data collected from smart sensors that are publicly available in the UC Irvine Machine Learning Repository (UCI)
arXiv Detail & Related papers (2020-10-07T10:58:46Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
We introduce a fast optimization-based meta-learning method for few-shot classification.
Our strategy enables important aspects of the base learner objective to be learned during meta-training.
We perform a comprehensive experimental analysis, demonstrating the speed and effectiveness of our approach.
arXiv Detail & Related papers (2020-10-01T15:59:31Z) - Revisiting the Application of Feature Selection Methods to Speech
Imagery BCI Datasets [1.7403133838762446]
We show how simple yet powerful feature selection/ranking methods can be applied to speech imagery datasets.
Our primary goal is to improve the resulting classification accuracies from support vector machines, $k$-nearest neighbour, decision tree, linear discriminant analysis and long short-term memory recurrent neural network classifiers.
arXiv Detail & Related papers (2020-08-17T22:48:52Z) - Valid Explanations for Learning to Rank Models [5.320400771224103]
We propose a model agnostic local explanation method that seeks to identify a small subset of input features as explanation to a ranking decision.
We introduce new notions of validity and completeness of explanations specifically for rankings, based on the presence or absence of selected features.
arXiv Detail & Related papers (2020-04-29T06:21:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.