Feature Importance Ranking for Deep Learning
- URL: http://arxiv.org/abs/2010.08973v1
- Date: Sun, 18 Oct 2020 12:20:27 GMT
- Title: Feature Importance Ranking for Deep Learning
- Authors: Maksymilian Wojtas and Ke Chen
- Abstract summary: We propose a novel dual-net architecture consisting of operator and selector for discovery of an optimal feature subset of a fixed size.
During learning, the operator is trained for a supervised learning task via optimal feature subset candidates generated by the selector.
In deployment, the selector generates an optimal feature subset and ranks feature importance, while the operator makes predictions based on the optimal subset for test data.
- Score: 7.287652818214449
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature importance ranking has become a powerful tool for explainable AI.
However, its nature of combinatorial optimization poses a great challenge for
deep learning. In this paper, we propose a novel dual-net architecture
consisting of operator and selector for discovery of an optimal feature subset
of a fixed size and ranking the importance of those features in the optimal
subset simultaneously. During learning, the operator is trained for a
supervised learning task via optimal feature subset candidates generated by the
selector that learns predicting the learning performance of the operator
working on different optimal subset candidates. We develop an alternate
learning algorithm that trains two nets jointly and incorporates a stochastic
local search procedure into learning to address the combinatorial optimization
challenge. In deployment, the selector generates an optimal feature subset and
ranks feature importance, while the operator makes predictions based on the
optimal subset for test data. A thorough evaluation on synthetic, benchmark and
real data sets suggests that our approach outperforms several state-of-the-art
feature importance ranking and supervised feature selection methods. (Our
source code is available: https://github.com/maksym33/FeatureImportanceDL)
Related papers
- Optimally Improving Cooperative Learning in a Social Setting [4.200480236342444]
We consider a cooperative learning scenario where a collection of networked agents with individually owned classifiers dynamically update their predictions.
We show a time algorithm for optimizing the aggregate objective function, and show that optimizing the egalitarian objective function is NP-hard.
The performance of all of our algorithms are guaranteed by mathematical analysis and backed by experiments on synthetic and real data.
arXiv Detail & Related papers (2024-05-31T14:07:33Z) - Feature Selection as Deep Sequential Generative Learning [50.00973409680637]
We develop a deep variational transformer model over a joint of sequential reconstruction, variational, and performance evaluator losses.
Our model can distill feature selection knowledge and learn a continuous embedding space to map feature selection decision sequences into embedding vectors associated with utility scores.
arXiv Detail & Related papers (2024-03-06T16:31:56Z) - Exact Combinatorial Optimization with Temporo-Attentional Graph Neural
Networks [17.128882942475]
We investigate two essential aspects of machine learning algorithms for optimization: temporal characteristics and attention.
We argue that for the task of variable selection in the branch-and-bound (B&B) algorithm, incorporating the temporal information as well as the bipartite graph attention improves the solver's performance.
arXiv Detail & Related papers (2023-11-23T08:07:15Z) - SortNet: Learning To Rank By a Neural-Based Sorting Algorithm [5.485151775727742]
We present SortNet, an adaptive ranking algorithm which orders objects using a neural network as a comparator.
The proposed algorithm is evaluated on the LETOR dataset showing promising performances in comparison with other state of the art algorithms.
arXiv Detail & Related papers (2023-11-03T12:14:26Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Meta-Wrapper: Differentiable Wrapping Operator for User Interest
Selection in CTR Prediction [97.99938802797377]
Click-through rate (CTR) prediction, whose goal is to predict the probability of the user to click on an item, has become increasingly significant in recommender systems.
Recent deep learning models with the ability to automatically extract the user interest from his/her behaviors have achieved great success.
We propose a novel approach under the framework of the wrapper method, which is named Meta-Wrapper.
arXiv Detail & Related papers (2022-06-28T03:28:15Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
We propose a fast unsupervised feature selection method, named as, Compactness Score (CSUFS) to select desired features.
Our proposed algorithm seems to be more accurate and efficient compared with existing algorithms.
arXiv Detail & Related papers (2022-01-31T13:01:37Z) - Automated Human Activity Recognition by Colliding Bodies
Optimization-based Optimal Feature Selection with Recurrent Neural Network [0.0]
Human Activity Recognition (HAR) is considered to be an efficient model in pervasive computation from sensor readings.
This paper tempts to implement the HAR system using deep learning with the data collected from smart sensors that are publicly available in the UC Irvine Machine Learning Repository (UCI)
arXiv Detail & Related papers (2020-10-07T10:58:46Z) - Fast Few-Shot Classification by Few-Iteration Meta-Learning [173.32497326674775]
We introduce a fast optimization-based meta-learning method for few-shot classification.
Our strategy enables important aspects of the base learner objective to be learned during meta-training.
We perform a comprehensive experimental analysis, demonstrating the speed and effectiveness of our approach.
arXiv Detail & Related papers (2020-10-01T15:59:31Z) - Outlier Detection Ensemble with Embedded Feature Selection [42.8338013000469]
We propose an outlier detection ensemble framework with embedded feature selection (ODEFS)
For each random sub-sampling based learning component, ODEFS unifies feature selection and outlier detection into a pairwise ranking formulation.
We adopt the thresholded self-paced learning to simultaneously optimize feature selection and example selection.
arXiv Detail & Related papers (2020-01-15T13:14:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.