論文の概要: Can LLMs Help Predict Elections? (Counter)Evidence from the World's Largest Democracy
- arxiv url: http://arxiv.org/abs/2405.07828v1
- Date: Mon, 13 May 2024 15:13:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-14 13:15:58.816254
- Title: Can LLMs Help Predict Elections? (Counter)Evidence from the World's Largest Democracy
- Title(参考訳): LLMは選挙予測に役立てられるか? (ボランティア)世界最大規模の民主主義の証拠
- Authors: Pratik Gujral, Kshitij Awaldhi, Navya Jain, Bhavuk Bhandula, Abhijnan Chakraborty,
- Abstract要約: ソーシャルメディアが世論の形成にどのように影響し、政治的結果に影響を及ぼすかについての研究は、一般的な調査分野である。
本稿では,Large Language Models (LLMs) の機能を活用し,ソーシャルメディアデータを調べ,選挙結果を予測する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 3.0915192911449796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The study of how social media affects the formation of public opinion and its influence on political results has been a popular field of inquiry. However, current approaches frequently offer a limited comprehension of the complex political phenomena, yielding inconsistent outcomes. In this work, we introduce a new method: harnessing the capabilities of Large Language Models (LLMs) to examine social media data and forecast election outcomes. Our research diverges from traditional methodologies in two crucial respects. First, we utilize the sophisticated capabilities of foundational LLMs, which can comprehend the complex linguistic subtleties and contextual details present in social media data. Second, we focus on data from X (Twitter) in India to predict state assembly election outcomes. Our method entails sentiment analysis of election-related tweets through LLMs to forecast the actual election results, and we demonstrate the superiority of our LLM-based method against more traditional exit and opinion polls. Overall, our research offers valuable insights into the unique dynamics of Indian politics and the remarkable impact of social media in molding public attitudes within this context.
- Abstract(参考訳): ソーシャルメディアが世論の形成にどのように影響し、政治的結果に影響を及ぼすかについての研究は、一般的な調査分野である。
しかし、現在のアプローチはしばしば複雑な政治現象の限定的な理解を提供し、矛盾した結果をもたらす。
本研究では,Large Language Models (LLMs) の機能を活用し,ソーシャルメディアデータの検証と選挙結果の予測を行う新しい手法を提案する。
我々の研究は従来の方法論から2つの重要な点において分かれている。
まず,ソーシャルメディアデータに存在する複雑な言語的微妙さと文脈的詳細を理解可能な基礎的LLMの高度な機能を利用する。
第2に、インドのX(Twitter)のデータに着目し、州議会選挙の結果を予測する。
提案手法では,選挙関連ツイートの感情分析を行い,選挙結果の予測を行うとともに,従来の出口・世論調査に対する LLM 手法の優位性を実証する。
全体として、我々の研究は、インド政治のユニークなダイナミクスと、この文脈における大衆の態度形成におけるソーシャルメディアの顕著な影響に関する貴重な洞察を提供する。
関連論文リスト
- Leveraging AI and Sentiment Analysis for Forecasting Election Outcomes in Mauritius [0.0]
本研究では,2024年のモーリシャス選挙に焦点をあて,AIによる感情分析を選挙結果を予測する新しいツールとして活用することを検討する。
我々は、主要な2つの政党であるL'Alliance LepepとL'Alliance Du Changementに対するメディアの感情を分析する。
調査結果は、肯定的なメディアの感情が、予測された選挙利益と強く相関していることを示し、メディアが大衆の認識を形作る役割を強調している。
論文 参考訳(メタデータ) (2024-10-28T09:21:15Z) - ElectionSim: Massive Population Election Simulation Powered by Large Language Model Driven Agents [70.17229548653852]
我々は,大規模言語モデルに基づく革新的な選挙シミュレーションフレームワークであるElectronSimを紹介する。
ソーシャルメディアプラットフォームからサンプリングした100万レベルの投票者プールを提示し、正確な個人シミュレーションを支援する。
PPEは、米国大統領選挙シナリオ下での我々の枠組みの性能を評価するための、世論調査に基づく大統領選挙ベンチマークである。
論文 参考訳(メタデータ) (2024-10-28T05:25:50Z) - Large Language Models Reflect the Ideology of their Creators [73.25935570218375]
大規模言語モデル(LLM)は、自然言語を生成するために大量のデータに基づいて訓練される。
異なるLLMや言語にまたがるイデオロギー的姿勢の顕著な多様性を明らかにする。
論文 参考訳(メタデータ) (2024-10-24T04:02:30Z) - LLM-POTUS Score: A Framework of Analyzing Presidential Debates with Large Language Models [33.251235538905895]
本稿では,大規模言語モデルを用いた大統領討論のパフォーマンス評価手法を提案する。
本研究では, 候補者の「政策, ペルソナ, パーソナ, パースペクティブ」(3P)と, 4つの主要オーディエンスグループの「関心, イデオロギー, アイデンティティ」とどのように共鳴するかを分析する枠組みを提案する。
提案手法では,LLM-POTUSスコアを生成するために,大規模な言語モデルを用いる。
論文 参考訳(メタデータ) (2024-09-12T15:40:45Z) - United in Diversity? Contextual Biases in LLM-Based Predictions of the 2024 European Parliament Elections [45.84205238554709]
大規模言語モデル(LLM)は、社会科学研究に革命をもたらす可能性があると認識されている。
本研究では,LLMに基づく世論の予測が文脈依存バイアスを示す程度について検討した。
我々は2024年の欧州議会選挙における投票行動について、最先端のLDMを用いて予測する。
論文 参考訳(メタデータ) (2024-08-29T16:01:06Z) - Representation Bias in Political Sample Simulations with Large Language Models [54.48283690603358]
本研究は,大規模言語モデルを用いた政治サンプルのシミュレーションにおけるバイアスの同定と定量化を目的とする。
GPT-3.5-Turboモデルを用いて、米国選挙研究、ドイツ縦割り選挙研究、ズオビアオデータセット、中国家族パネル研究のデータを活用する。
論文 参考訳(メタデータ) (2024-07-16T05:52:26Z) - Whose Side Are You On? Investigating the Political Stance of Large Language Models [56.883423489203786]
大規模言語モデル(LLM)の政治的指向性について,8つのトピックのスペクトルにわたって検討する。
我々の調査は、中絶からLGBTQ問題まで8つのトピックにまたがるLLMの政治的整合性について考察している。
この結果から,ユーザはクエリ作成時に留意すべきであり,中立的なプロンプト言語を選択する際には注意が必要であることが示唆された。
論文 参考訳(メタデータ) (2024-03-15T04:02:24Z) - Prediction of the 2023 Turkish Presidential Election Results Using
Social Media Data [0.5156484100374059]
我々は,従来の世論調査データとソーシャルメディアデータを組み合わせることで,トルコにおける2023年の選挙に参加する政党の投票シェアを予測することを目的とする。
私たちのアプローチは、コンテンツではなく、ソーシャルメディアのインタラクションの数を考慮したボリュームベースのアプローチです。
論文 参考訳(メタデータ) (2023-05-28T13:17:51Z) - Design and analysis of tweet-based election models for the 2021 Mexican
legislative election [55.41644538483948]
選挙日前の6ヶ月の間に、1500万件の選挙関連ツイートのデータセットを使用します。
地理的属性を持つデータを用いたモデルが従来のポーリング法よりも精度と精度で選挙結果を決定することがわかった。
論文 参考訳(メタデータ) (2023-01-02T12:40:05Z) - Inferring Political Preferences from Twitter [0.0]
ソーシャルメディアの政治的センチメント分析は、政治ストラテジストが政党や候補者のパフォーマンスを精査するのに役立つ。
選挙期間中、ソーシャルネットワークはブログ、チャット、討論、政党や政治家の展望に関する議論で溢れている。
本研究では、従来の機械学習を用いて、テキスト分類問題としてモデル化することで、ツイートに存在する政治的意見の傾きを特定することを選んだ。
論文 参考訳(メタデータ) (2020-07-21T05:20:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。