GrootVL: Tree Topology is All You Need in State Space Model
- URL: http://arxiv.org/abs/2406.02395v1
- Date: Tue, 4 Jun 2024 15:09:29 GMT
- Title: GrootVL: Tree Topology is All You Need in State Space Model
- Authors: Yicheng Xiao, Lin Song, Shaoli Huang, Jiangshan Wang, Siyu Song, Yixiao Ge, Xiu Li, Ying Shan,
- Abstract summary: GrootVL is a versatile multimodal framework that can be applied to both visual and textual tasks.
Our method significantly outperforms existing structured state space models on image classification, object detection and segmentation.
By fine-tuning large language models, our approach achieves consistent improvements in multiple textual tasks at minor training cost.
- Score: 66.36757400689281
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The state space models, employing recursively propagated features, demonstrate strong representation capabilities comparable to Transformer models and superior efficiency. However, constrained by the inherent geometric constraints of sequences, it still falls short in modeling long-range dependencies. To address this issue, we propose the GrootVL network, which first dynamically generates a tree topology based on spatial relationships and input features. Then, feature propagation is performed based on this graph, thereby breaking the original sequence constraints to achieve stronger representation capabilities. Additionally, we introduce a linear complexity dynamic programming algorithm to enhance long-range interactions without increasing computational cost. GrootVL is a versatile multimodal framework that can be applied to both visual and textual tasks. Extensive experiments demonstrate that our method significantly outperforms existing structured state space models on image classification, object detection and segmentation. Besides, by fine-tuning large language models, our approach achieves consistent improvements in multiple textual tasks at minor training cost.
Related papers
- HRVMamba: High-Resolution Visual State Space Model for Dense Prediction [60.80423207808076]
State Space Models (SSMs) with efficient hardware-aware designs have demonstrated significant potential in computer vision tasks.
These models have been constrained by three key challenges: insufficient inductive bias, long-range forgetting, and low-resolution output representation.
We introduce the Dynamic Visual State Space (DVSS) block, which employs deformable convolution to mitigate the long-range forgetting problem.
We also introduce High-Resolution Visual State Space Model (HRVMamba) based on the DVSS block, which preserves high-resolution representations throughout the entire process.
arXiv Detail & Related papers (2024-10-04T06:19:29Z) - Topological Deep Learning with State-Space Models: A Mamba Approach for Simplicial Complexes [4.787059527893628]
We propose a novel architecture designed to operate with simplicial complexes, utilizing the Mamba state-space model as its backbone.
Our approach generates sequences for the nodes based on the neighboring cells, enabling direct communication between all higher-order structures, regardless of their rank.
arXiv Detail & Related papers (2024-09-18T14:49:25Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
We introduce a feature-centric pretraining perspective by treating graph structure as a prior.
Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walks.
GSPT can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets.
arXiv Detail & Related papers (2024-06-19T22:30:08Z) - SHMamba: Structured Hyperbolic State Space Model for Audio-Visual Question Answering [5.016335384639901]
Multi-modal input of Audio-Visual Question Answering (AVQA) makes feature extraction and fusion processes more challenging.
We propose SHMamba: Structured Hyperbolic State Space Model to integrate the advantages of hyperbolic geometry and state space models.
Our method demonstrates superiority among all current major methods and is more suitable for practical application scenarios.
arXiv Detail & Related papers (2024-06-14T08:43:31Z) - Orchid: Flexible and Data-Dependent Convolution for Sequence Modeling [4.190836962132713]
This paper introduces Orchid, a novel architecture designed to address the quadratic complexity of traditional attention mechanisms.
At the core of this architecture lies a new data-dependent global convolution layer, which contextually adapts its conditioned kernel on input sequence.
We evaluate the proposed model across multiple domains, including language modeling and image classification, to highlight its performance and generality.
arXiv Detail & Related papers (2024-02-28T17:36:45Z) - Homological Convolutional Neural Networks [4.615338063719135]
We propose a novel deep learning architecture that exploits the data structural organization through topologically constrained network representations.
We test our model on 18 benchmark datasets against 5 classic machine learning and 3 deep learning models.
arXiv Detail & Related papers (2023-08-26T08:48:51Z) - Sequence Modeling with Multiresolution Convolutional Memory [27.218134279968062]
We build a new building block for sequence modeling called a MultiresLayer.
The key component of our model is the multiresolution convolution, capturing multiscale trends in the input sequence.
Our model yields state-of-the-art performance on a number of sequence classification and autoregressive density estimation tasks.
arXiv Detail & Related papers (2023-05-02T17:50:54Z) - Rethinking Learnable Tree Filter for Generic Feature Transform [71.77463476808585]
Learnable Tree Filter presents a remarkable approach to model structure-preserving relations for semantic segmentation.
To relax the geometric constraint, we give the analysis by reformulating it as a Markov Random Field and introduce a learnable unary term.
For semantic segmentation, we achieve leading performance (82.1% mIoU) on the Cityscapes benchmark without bells-and-whistles.
arXiv Detail & Related papers (2020-12-07T07:16:47Z) - Conditional Generative Modeling via Learning the Latent Space [54.620761775441046]
We propose a novel framework for conditional generation in multimodal spaces.
It uses latent variables to model generalizable learning patterns.
At inference, the latent variables are optimized to find optimal solutions corresponding to multiple output modes.
arXiv Detail & Related papers (2020-10-07T03:11:34Z) - S2RMs: Spatially Structured Recurrent Modules [105.0377129434636]
We take a step towards exploiting dynamic structure that are capable of simultaneously exploiting both modular andtemporal structures.
We find our models to be robust to the number of available views and better capable of generalization to novel tasks without additional training.
arXiv Detail & Related papers (2020-07-13T17:44:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.