Simultaneous Inference for Local Structural Parameters with Random Forests
- URL: http://arxiv.org/abs/2405.07860v3
- Date: Mon, 9 Sep 2024 18:33:18 GMT
- Title: Simultaneous Inference for Local Structural Parameters with Random Forests
- Authors: David M. Ritzwoller, Vasilis Syrgkanis,
- Abstract summary: We construct simultaneous confidence intervals for solutions to conditional moment equations.
We obtain several new order-explicit results on the concentration and normal approximation of high-dimensional U.S.
As a by-product, we obtain several new order-explicit results on the concentration and normal approximation of high-dimensional U.S.
- Score: 19.014535120129338
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We construct simultaneous confidence intervals for solutions to conditional moment equations. The intervals are built around a class of nonparametric regression algorithms based on subsampled kernels. This class encompasses various forms of subsampled random forest regression, including Generalized Random Forests (Athey et al., 2019). Although simultaneous validity is often desirable in practice -- for example, for fine-grained characterization of treatment effect heterogeneity -- only confidence intervals that confer pointwise guarantees were previously available. Our work closes this gap. As a by-product, we obtain several new order-explicit results on the concentration and normal approximation of high-dimensional U-statistics.
Related papers
- Asymptotic Time-Uniform Inference for Parameters in Averaged Stochastic Approximation [23.89036529638614]
We study time-uniform statistical inference for parameters in approximation (SA)
We analyze the almost-sure convergence rates of the averaged iterates to a scaled sum of Gaussians in both linear and nonlinear SA problems.
arXiv Detail & Related papers (2024-10-19T10:27:26Z) - Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
We present the first performance guarantee with explicit dimensional general score-mismatched diffusion samplers.
We show that score mismatches result in an distributional bias between the target and sampling distributions, proportional to the accumulated mismatch between the target and training distributions.
This result can be directly applied to zero-shot conditional samplers for any conditional model, irrespective of measurement noise.
arXiv Detail & Related papers (2024-10-17T16:42:12Z) - Relaxed Quantile Regression: Prediction Intervals for Asymmetric Noise [51.87307904567702]
Quantile regression is a leading approach for obtaining such intervals via the empirical estimation of quantiles in the distribution of outputs.
We propose Relaxed Quantile Regression (RQR), a direct alternative to quantile regression based interval construction that removes this arbitrary constraint.
We demonstrate that this added flexibility results in intervals with an improvement in desirable qualities.
arXiv Detail & Related papers (2024-06-05T13:36:38Z) - Inference with Mondrian Random Forests [6.97762648094816]
We give precise bias and variance characterizations, along with a Berry-Esseen-type central limit theorem, for the Mondrian random forest regression estimator.
We present valid statistical inference methods for the unknown regression function.
Efficient and implementable algorithms are devised for both batch and online learning settings.
arXiv Detail & Related papers (2023-10-15T01:41:42Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Sampling (AIS) synthesizes weighted samples from an intractable distribution.
We propose the Constant Rate AIS algorithm and its efficient implementation for $alpha$-divergences.
arXiv Detail & Related papers (2023-06-27T08:15:28Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
Conditional local independence is an independence relation among continuous time processes.
No nonparametric test of conditional local independence has been available.
We propose such a nonparametric test based on double machine learning.
arXiv Detail & Related papers (2022-03-25T10:31:02Z) - Random Forest Weighted Local Fréchet Regression with Random Objects [18.128663071848923]
We propose a novel random forest weighted local Fr'echet regression paradigm.
Our first method uses these weights as the local average to solve the conditional Fr'echet mean.
Second method performs local linear Fr'echet regression, both significantly improving existing Fr'echet regression methods.
arXiv Detail & Related papers (2022-02-10T09:10:59Z) - Minibatch vs Local SGD with Shuffling: Tight Convergence Bounds and
Beyond [63.59034509960994]
We study shuffling-based variants: minibatch and local Random Reshuffling, which draw gradients without replacement.
For smooth functions satisfying the Polyak-Lojasiewicz condition, we obtain convergence bounds which show that these shuffling-based variants converge faster than their with-replacement counterparts.
We propose an algorithmic modification called synchronized shuffling that leads to convergence rates faster than our lower bounds in near-homogeneous settings.
arXiv Detail & Related papers (2021-10-20T02:25:25Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
We show that discretizations yielding consistent estimators have the property of invariance under coarse-graining'
This result explains why combining differencing schemes for derivatives reconstruction and local-in-time inference approaches does not work for time series analysis of second or higher order differential equations.
arXiv Detail & Related papers (2021-01-16T17:11:02Z) - Tolerance and Prediction Intervals for Non-normal Models [0.0]
A prediction interval covers a future observation from a random process in repeated sampling.
A tolerance interval covers a population percentile in repeated sampling and is often based on a pivotal quantity.
arXiv Detail & Related papers (2020-11-23T17:48:09Z) - An Embedded Model Estimator for Non-Stationary Random Functions using
Multiple Secondary Variables [0.0]
This paper introduces the method and shows that it has consistency results that are similar in nature to those applying to geostatistical modelling and to Quantile Random Forests.
The algorithm works by estimating a conditional distribution for the target variable at each target location.
arXiv Detail & Related papers (2020-11-09T00:14:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.