Can Better Text Semantics in Prompt Tuning Improve VLM Generalization?
- URL: http://arxiv.org/abs/2405.07921v2
- Date: Thu, 20 Jun 2024 09:46:07 GMT
- Title: Can Better Text Semantics in Prompt Tuning Improve VLM Generalization?
- Authors: Hari Chandana Kuchibhotla, Sai Srinivas Kancheti, Abbavaram Gowtham Reddy, Vineeth N Balasubramanian,
- Abstract summary: We introduce a prompt-tuning method that leverages class descriptions obtained from Large Language Models.
Our approach constructs part-level description-guided image and text features, which are subsequently aligned to learn more generalizable prompts.
Our comprehensive experiments conducted across 11 benchmark datasets show that our method outperforms established methods.
- Score: 28.041879000565874
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Going beyond mere fine-tuning of vision-language models (VLMs), learnable prompt tuning has emerged as a promising, resource-efficient alternative. Despite their potential, effectively learning prompts faces the following challenges: (i) training in a low-shot scenario results in overfitting, limiting adaptability, and yielding weaker performance on newer classes or datasets; (ii) prompt-tuning's efficacy heavily relies on the label space, with decreased performance in large class spaces, signaling potential gaps in bridging image and class concepts. In this work, we investigate whether better text semantics can help address these concerns. In particular, we introduce a prompt-tuning method that leverages class descriptions obtained from Large Language Models (LLMs). These class descriptions are used to bridge image and text modalities. Our approach constructs part-level description-guided image and text features, which are subsequently aligned to learn more generalizable prompts. Our comprehensive experiments conducted across 11 benchmark datasets show that our method outperforms established methods, demonstrating substantial improvements.
Related papers
- IPO: Interpretable Prompt Optimization for Vision-Language Models [40.83071220530289]
This paper introduces a simple but interpretable prompt (IPO)
IPO utilizes large language models (LLMs) to generate textual prompts dynamically.
We incorporate a large multimodal model (LMM) to condition on visual content by generating image descriptions.
arXiv Detail & Related papers (2024-10-20T14:10:22Z) - Adapting Vision-Language Models to Open Classes via Test-Time Prompt Tuning [50.26965628047682]
Adapting pre-trained models to open classes is a challenging problem in machine learning.
In this paper, we consider combining the advantages of both and come up with a test-time prompt tuning approach.
Our proposed method outperforms all comparison methods on average considering both base and new classes.
arXiv Detail & Related papers (2024-08-29T12:34:01Z) - IntCoOp: Interpretability-Aware Vision-Language Prompt Tuning [94.52149969720712]
IntCoOp learns to jointly align attribute-level inductive biases and class embeddings during prompt-tuning.
IntCoOp improves CoOp by 7.35% in average performance across 10 diverse datasets.
arXiv Detail & Related papers (2024-06-19T16:37:31Z) - AAPL: Adding Attributes to Prompt Learning for Vision-Language Models [6.32186874112557]
We propose adversarial token embedding to disentangle low-level visual augmentation features from high-level class information when inducing bias in learnable prompts.
We have conducted experiments across 11 datasets, and overall, AAPL shows favorable performances compared to the existing methods in few-shot learning, zero-shot learning, cross-dataset, and domain generalization tasks.
arXiv Detail & Related papers (2024-04-25T17:51:10Z) - LAMM: Label Alignment for Multi-Modal Prompt Learning [17.478967970736115]
We introduce an innovative label alignment method named textbfLAMM, which can adjust the category embeddings of downstream datasets through end-to-end training.
Our method significantly improves the performance of existing multi-modal prompt learning models in few-shot scenarios.
Our methodology exhibits the preeminence in continual learning compared to other prompt tuning methods.
arXiv Detail & Related papers (2023-12-13T15:29:52Z) - Prompting classes: Exploring the Power of Prompt Class Learning in
Weakly Supervised Semantic Segmentation [15.467510304266883]
We study the impact of prompt tuning on weakly supervised semantic segmentation.
We introduce a novel approach based on a PrOmpt cLass lEarning (POLE) strategy.
We demonstrate that our simple, yet efficient approach achieves SOTA performance in a well-known WSSS benchmark.
arXiv Detail & Related papers (2023-06-30T19:25:18Z) - Task-Oriented Multi-Modal Mutual Leaning for Vision-Language Models [52.3032592038514]
We propose a class-aware text prompt to enrich generated prompts with label-related image information.
We achieve an average improvement of 4.03% on new classes and 3.19% on harmonic-mean over eleven classification benchmarks.
arXiv Detail & Related papers (2023-03-30T06:02:40Z) - CPL: Counterfactual Prompt Learning for Vision and Language Models [76.18024920393245]
This paper presents a novel underlinetextbfCounterfactual underlinetextbfPrompt underlinetextbfLearning (CPL) method for vision and language models.
CPL simultaneously employs counterfactual generation and contrastive learning in a joint optimization framework.
Experiments demonstrate that CPL can obtain superior few-shot performance on different vision and language tasks.
arXiv Detail & Related papers (2022-10-19T08:06:39Z) - LASP: Text-to-Text Optimization for Language-Aware Soft Prompting of
Vision & Language Models [67.19124099815645]
We propose a novel Language-Aware Soft Prompting (LASP) learning method to alleviate base class overfitting.
LASP is inherently amenable to including, during training, virtual classes, i.e. class names for which no visual samples are available.
LASP matches and surpasses, for the first time, the accuracy on novel classes obtained by hand-crafted prompts and CLIP for 8 out of 11 test datasets.
arXiv Detail & Related papers (2022-10-03T17:56:35Z) - RLPrompt: Optimizing Discrete Text Prompts With Reinforcement Learning [84.75064077323098]
This paper proposes RLPrompt, an efficient discrete prompt optimization approach with reinforcement learning (RL)
RLPrompt is flexibly applicable to different types of LMs, such as masked gibberish (e.g., grammaBERT) and left-to-right models (e.g., GPTs)
Experiments on few-shot classification and unsupervised text style transfer show superior performance over a wide range of existing finetuning or prompting methods.
arXiv Detail & Related papers (2022-05-25T07:50:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.