POWQMIX: Weighted Value Factorization with Potentially Optimal Joint Actions Recognition for Cooperative Multi-Agent Reinforcement Learning
- URL: http://arxiv.org/abs/2405.08036v4
- Date: Tue, 26 Nov 2024 02:46:12 GMT
- Title: POWQMIX: Weighted Value Factorization with Potentially Optimal Joint Actions Recognition for Cooperative Multi-Agent Reinforcement Learning
- Authors: Chang Huang, Shatong Zhu, Junqiao Zhao, Hongtu Zhou, Chen Ye, Tiantian Feng, Changjun Jiang,
- Abstract summary: Value function factorization methods are commonly used in cooperative multi-agent reinforcement learning.
We propose the Potentially Optimal Joint Actions Weighted Qmix (POWQmix) algorithm, which recognizes the potentially optimal joint actions and assigns higher weights to the corresponding losses during training.
Experiments in matrix games, difficulty-enhanced predator-prey, and StarCraft II Multi-Agent Challenge environments demonstrate that our algorithm outperforms the state-of-the-art value-based multi-agent reinforcement learning methods.
- Score: 17.644279061872442
- License:
- Abstract: Value function factorization methods are commonly used in cooperative multi-agent reinforcement learning, with QMIX receiving significant attention. Many QMIX-based methods introduce monotonicity constraints between the joint action value and individual action values to achieve decentralized execution. However, such constraints limit the representation capacity of value factorization, restricting the joint action values it can represent and hindering the learning of the optimal policy. To address this challenge, we propose the Potentially Optimal Joint Actions Weighted QMIX (POWQMIX) algorithm, which recognizes the potentially optimal joint actions and assigns higher weights to the corresponding losses of these joint actions during training. We theoretically prove that with such a weighted training approach the optimal policy is guaranteed to be recovered. Experiments in matrix games, difficulty-enhanced predator-prey, and StarCraft II Multi-Agent Challenge environments demonstrate that our algorithm outperforms the state-of-the-art value-based multi-agent reinforcement learning methods.
Related papers
- Mitigating Relative Over-Generalization in Multi-Agent Reinforcement Learning [11.988291170853806]
We introduce MaxMax Q-Learning (MMQ), which employs an iterative process of sampling and evaluating potential next states.
This approach refines approximations of ideal state transitions, aligning more closely with the optimal joint policy of collaborating agents.
Our results demonstrate that MMQ frequently outperforms existing baselines, exhibiting enhanced convergence and sample efficiency.
arXiv Detail & Related papers (2024-11-17T15:00:39Z) - Mimicking Better by Matching the Approximate Action Distribution [48.95048003354255]
We introduce MAAD, a novel, sample-efficient on-policy algorithm for Imitation Learning from Observations.
We show that it requires considerable fewer interactions to achieve expert performance, outperforming current state-of-the-art on-policy methods.
arXiv Detail & Related papers (2023-06-16T12:43:47Z) - Expeditious Saliency-guided Mix-up through Random Gradient Thresholding [89.59134648542042]
Mix-up training approaches have proven to be effective in improving the generalization ability of Deep Neural Networks.
In this paper, inspired by the superior qualities of each direction over one another, we introduce a novel method that lies at the junction of the two routes.
We name our method R-Mix following the concept of "Random Mix-up"
In order to address the question of whether there exists a better decision protocol, we train a Reinforcement Learning agent that decides the mix-up policies.
arXiv Detail & Related papers (2022-12-09T14:29:57Z) - Decomposed Soft Actor-Critic Method for Cooperative Multi-Agent
Reinforcement Learning [10.64928897082273]
Experimental results demonstrate that mSAC significantly outperforms policy-based approach COMA.
In addition, mSAC achieves pretty good results on large action space tasks, such as 2c_vs_64zg and MMM2.
arXiv Detail & Related papers (2021-04-14T07:02:40Z) - Softmax with Regularization: Better Value Estimation in Multi-Agent
Reinforcement Learning [72.28520951105207]
Overestimation in $Q$-learning is an important problem that has been extensively studied in single-agent reinforcement learning.
We propose a novel regularization-based update scheme that penalizes large joint action-values deviating from a baseline.
We show that our method provides a consistent performance improvement on a set of challenging StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2021-03-22T14:18:39Z) - Modeling the Interaction between Agents in Cooperative Multi-Agent
Reinforcement Learning [2.9360071145551068]
We propose a novel cooperative MARL algorithm named as interactive actor-critic(IAC)
IAC models the interaction of agents from perspectives of policy and value function.
We extend the value decomposition methods to continuous control tasks and evaluate IAC on benchmark tasks including classic control and multi-agent particle environments.
arXiv Detail & Related papers (2021-02-10T01:58:28Z) - Weighted QMIX: Expanding Monotonic Value Function Factorisation for Deep
Multi-Agent Reinforcement Learning [66.94149388181343]
We present a new version of a popular $Q$-learning algorithm for MARL.
We show that it can recover the optimal policy even with access to $Q*$.
We also demonstrate improved performance on predator-prey and challenging multi-agent StarCraft benchmark tasks.
arXiv Detail & Related papers (2020-06-18T18:34:50Z) - Monotonic Value Function Factorisation for Deep Multi-Agent
Reinforcement Learning [55.20040781688844]
QMIX is a novel value-based method that can train decentralised policies in a centralised end-to-end fashion.
We propose the StarCraft Multi-Agent Challenge (SMAC) as a new benchmark for deep multi-agent reinforcement learning.
arXiv Detail & Related papers (2020-03-19T16:51:51Z) - FACMAC: Factored Multi-Agent Centralised Policy Gradients [103.30380537282517]
We propose FACtored Multi-Agent Centralised policy gradients (FACMAC)
It is a new method for cooperative multi-agent reinforcement learning in both discrete and continuous action spaces.
We evaluate FACMAC on variants of the multi-agent particle environments, a novel multi-agent MuJoCo benchmark, and a challenging set of StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2020-03-14T21:29:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.