Ensemble-MIX: Enhancing Sample Efficiency in Multi-Agent RL Using Ensemble Methods
- URL: http://arxiv.org/abs/2506.02841v2
- Date: Sun, 08 Jun 2025 19:44:49 GMT
- Title: Ensemble-MIX: Enhancing Sample Efficiency in Multi-Agent RL Using Ensemble Methods
- Authors: Tom Danino, Nahum Shimkin,
- Abstract summary: Multi-agent reinforcement learning (MARL) methods have achieved state-of-the-art results on a range of multi-agent tasks.<n>Yet, MARL algorithms require significantly more environment interactions than their single-agent counterparts to converge.<n>We propose a novel algorithm that combines a decomposed centralized critic with decentralized ensemble learning.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-agent reinforcement learning (MARL) methods have achieved state-of-the-art results on a range of multi-agent tasks. Yet, MARL algorithms typically require significantly more environment interactions than their single-agent counterparts to converge, a problem exacerbated by the difficulty in exploring over a large joint action space and the high variance intrinsic to MARL environments. To tackle these issues, we propose a novel algorithm that combines a decomposed centralized critic with decentralized ensemble learning, incorporating several key contributions. The main component in our scheme is a selective exploration method that leverages ensemble kurtosis. We extend the global decomposed critic with a diversity-regularized ensemble of individual critics and utilize its excess kurtosis to guide exploration toward high-uncertainty states and actions. To improve sample efficiency, we train the centralized critic with a novel truncated variation of the TD($\lambda$) algorithm, enabling efficient off-policy learning with reduced variance. On the actor side, our suggested algorithm adapts the mixed samples approach to MARL, mixing on-policy and off-policy loss functions for training the actors. This approach balances between stability and efficiency and outperforms purely off-policy learning. The evaluation shows our method outperforms state-of-the-art baselines on standard MARL benchmarks, including a variety of SMAC II maps.
Related papers
- MisoDICE: Multi-Agent Imitation from Unlabeled Mixed-Quality Demonstrations [5.4482836906033585]
We study offline imitation learning (IL) in cooperative multi-agent settings, where demonstrations have unlabeled mixed quality.<n>Our proposed solution is structured in two stages: trajectory labeling and multi-agent imitation learning.<n>We introduce MisoDICE, a novel multi-agent IL algorithm that leverages these labels to learn robust policies.
arXiv Detail & Related papers (2025-05-24T08:43:42Z) - O-MAPL: Offline Multi-agent Preference Learning [5.4482836906033585]
Inferring reward functions from demonstrations is a key challenge in reinforcement learning (RL)<n>We introduce a novel end-to-end preference-based learning framework for cooperative MARL.<n>Our algorithm outperforms existing methods across various tasks.
arXiv Detail & Related papers (2025-01-31T08:08:20Z) - POGEMA: A Benchmark Platform for Cooperative Multi-Agent Pathfinding [76.67608003501479]
We introduce POGEMA, a comprehensive set of tools that includes a fast environment for learning, a problem instance generator, and a visualization toolkit.<n>We also introduce and define an evaluation protocol that specifies a range of domain-related metrics, computed based on primary evaluation indicators.<n>The results of this comparison, which involves a variety of state-of-the-art MARL, search-based, and hybrid methods, are presented.
arXiv Detail & Related papers (2024-07-20T16:37:21Z) - Expeditious Saliency-guided Mix-up through Random Gradient Thresholding [89.59134648542042]
Mix-up training approaches have proven to be effective in improving the generalization ability of Deep Neural Networks.
In this paper, inspired by the superior qualities of each direction over one another, we introduce a novel method that lies at the junction of the two routes.
We name our method R-Mix following the concept of "Random Mix-up"
In order to address the question of whether there exists a better decision protocol, we train a Reinforcement Learning agent that decides the mix-up policies.
arXiv Detail & Related papers (2022-12-09T14:29:57Z) - Solving Continuous Control via Q-learning [54.05120662838286]
We show that a simple modification of deep Q-learning largely alleviates issues with actor-critic methods.
By combining bang-bang action discretization with value decomposition, framing single-agent control as cooperative multi-agent reinforcement learning (MARL), this simple critic-only approach matches performance of state-of-the-art continuous actor-critic methods.
arXiv Detail & Related papers (2022-10-22T22:55:50Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
Method for unsupervised meta-learning, CACTUs, is a clustering-based approach with pseudo-labeling.
This approach is model-agnostic and can be combined with supervised algorithms to learn from unlabeled data.
We prove that the core reason for this is lack of a clustering-friendly property in the embedding space.
arXiv Detail & Related papers (2022-09-27T19:04:36Z) - Off-Policy Correction For Multi-Agent Reinforcement Learning [9.599347559588216]
Multi-agent reinforcement learning (MARL) provides a framework for problems involving multiple interacting agents.
Despite apparent similarity to the single-agent case, multi-agent problems are often harder to train and analyze theoretically.
We propose MA-Trace, a new on-policy actor-critic algorithm, which extends V-Trace to the MARL setting.
arXiv Detail & Related papers (2021-11-22T14:23:13Z) - Softmax with Regularization: Better Value Estimation in Multi-Agent
Reinforcement Learning [72.28520951105207]
Overestimation in $Q$-learning is an important problem that has been extensively studied in single-agent reinforcement learning.
We propose a novel regularization-based update scheme that penalizes large joint action-values deviating from a baseline.
We show that our method provides a consistent performance improvement on a set of challenging StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2021-03-22T14:18:39Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z) - FACMAC: Factored Multi-Agent Centralised Policy Gradients [103.30380537282517]
We propose FACtored Multi-Agent Centralised policy gradients (FACMAC)
It is a new method for cooperative multi-agent reinforcement learning in both discrete and continuous action spaces.
We evaluate FACMAC on variants of the multi-agent particle environments, a novel multi-agent MuJoCo benchmark, and a challenging set of StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2020-03-14T21:29:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.