When factorization meets argumentation: towards argumentative explanations
- URL: http://arxiv.org/abs/2405.08131v1
- Date: Mon, 13 May 2024 19:16:28 GMT
- Title: When factorization meets argumentation: towards argumentative explanations
- Authors: Jinfeng Zhong, Elsa Negre,
- Abstract summary: We propose a novel model that combines factorization-based methods with argumentation frameworks (AFs)
Our framework seamlessly incorporates side information, such as user contexts, leading to more accurate predictions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Factorization-based models have gained popularity since the Netflix challenge {(2007)}. Since that, various factorization-based models have been developed and these models have been proven to be efficient in predicting users' ratings towards items. A major concern is that explaining the recommendations generated by such methods is non-trivial because the explicit meaning of the latent factors they learn are not always clear. In response, we propose a novel model that combines factorization-based methods with argumentation frameworks (AFs). The integration of AFs provides clear meaning at each stage of the model, enabling it to produce easily understandable explanations for its recommendations. In this model, for every user-item interaction, an AF is defined in which the features of items are considered as arguments, and the users' ratings towards these features determine the strength and polarity of these arguments. This perspective allows our model to treat feature attribution as a structured argumentation procedure, where each calculation is marked with explicit meaning, enhancing its inherent interpretability. Additionally, our framework seamlessly incorporates side information, such as user contexts, leading to more accurate predictions. We anticipate at least three practical applications for our model: creating explanation templates, providing interactive explanations, and generating contrastive explanations. Through testing on real-world datasets, we have found that our model, along with its variants, not only surpasses existing argumentation-based methods but also competes effectively with current context-free and context-aware methods.
Related papers
- Explaining Datasets in Words: Statistical Models with Natural Language Parameters [66.69456696878842]
We introduce a family of statistical models -- including clustering, time series, and classification models -- parameterized by natural language predicates.
We apply our framework to a wide range of problems: taxonomizing user chat dialogues, characterizing how they evolve across time, finding categories where one language model is better than the other.
arXiv Detail & Related papers (2024-09-13T01:40:20Z) - Preference-Based Abstract Argumentation for Case-Based Reasoning (with Appendix) [9.5382175632919]
We introduce Preference-Based Abstract Argumentation for Case-Based Reasoning (which we call AA-CBR-P)
This allows users to define multiple approaches to compare cases with an ordering that specifies their preference over these comparison approaches.
We show empirically that our approach outperforms other interpretable machine learning models on a real-world medical dataset.
arXiv Detail & Related papers (2024-07-31T18:31:04Z) - Revisiting Demonstration Selection Strategies in In-Context Learning [66.11652803887284]
Large language models (LLMs) have shown an impressive ability to perform a wide range of tasks using in-context learning (ICL)
In this work, we first revisit the factors contributing to this variance from both data and model aspects, and find that the choice of demonstration is both data- and model-dependent.
We propose a data- and model-dependent demonstration selection method, textbfTopK + ConE, based on the assumption that textitthe performance of a demonstration positively correlates with its contribution to the model's understanding of the test samples.
arXiv Detail & Related papers (2024-01-22T16:25:27Z) - Causal Generative Explainers using Counterfactual Inference: A Case
Study on the Morpho-MNIST Dataset [5.458813674116228]
We present a generative counterfactual inference approach to study the influence of visual features as well as causal factors.
We employ visual explanation methods from OmnixAI open source toolkit to compare them with our proposed methods.
This finding suggests that our methods are well-suited for generating highly interpretable counterfactual explanations on causal datasets.
arXiv Detail & Related papers (2024-01-21T04:07:48Z) - Context-aware feature attribution through argumentation [0.0]
We define a novel feature attribution framework called Context-Aware Feature Attribution Through Argumentation (CA-FATA)
Our framework harnesses the power of argumentation by treating each feature as an argument that can either support, attack or neutralize a prediction.
arXiv Detail & Related papers (2023-10-24T20:02:02Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Partial Order in Chaos: Consensus on Feature Attributions in the
Rashomon Set [50.67431815647126]
Post-hoc global/local feature attribution methods are being progressively employed to understand machine learning models.
We show that partial orders of local/global feature importance arise from this methodology.
We show that every relation among features present in these partial orders also holds in the rankings provided by existing approaches.
arXiv Detail & Related papers (2021-10-26T02:53:14Z) - CARE: Coherent Actionable Recourse based on Sound Counterfactual
Explanations [0.0]
This paper introduces CARE, a modular explanation framework that addresses the model- and user-level desiderata.
As a model-agnostic approach, CARE generates multiple, diverse explanations for any black-box model.
arXiv Detail & Related papers (2021-08-18T15:26:59Z) - Attentional Prototype Inference for Few-Shot Segmentation [128.45753577331422]
We propose attentional prototype inference (API), a probabilistic latent variable framework for few-shot segmentation.
We define a global latent variable to represent the prototype of each object category, which we model as a probabilistic distribution.
We conduct extensive experiments on four benchmarks, where our proposal obtains at least competitive and often better performance than state-of-the-art prototype-based methods.
arXiv Detail & Related papers (2021-05-14T06:58:44Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z) - Towards Unifying Feature Attribution and Counterfactual Explanations:
Different Means to the Same End [17.226134854746267]
We present a method to generate feature attribution explanations from a set of counterfactual examples.
We show how counterfactual examples can be used to evaluate the goodness of an attribution-based explanation in terms of its necessity and sufficiency.
arXiv Detail & Related papers (2020-11-10T05:41:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.