CARE: Coherent Actionable Recourse based on Sound Counterfactual
Explanations
- URL: http://arxiv.org/abs/2108.08197v1
- Date: Wed, 18 Aug 2021 15:26:59 GMT
- Title: CARE: Coherent Actionable Recourse based on Sound Counterfactual
Explanations
- Authors: Peyman Rasouli and Ingrid Chieh Yu
- Abstract summary: This paper introduces CARE, a modular explanation framework that addresses the model- and user-level desiderata.
As a model-agnostic approach, CARE generates multiple, diverse explanations for any black-box model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Counterfactual explanation methods interpret the outputs of a machine
learning model in the form of "what-if scenarios" without compromising the
fidelity-interpretability trade-off. They explain how to obtain a desired
prediction from the model by recommending small changes to the input features,
aka recourse. We believe an actionable recourse should be created based on
sound counterfactual explanations originating from the distribution of the
ground-truth data and linked to the domain knowledge. Moreover, it needs to
preserve the coherency between changed/unchanged features while satisfying
user/domain-specified constraints. This paper introduces CARE, a modular
explanation framework that addresses the model- and user-level desiderata in a
consecutive and structured manner. We tackle the existing requirements by
proposing novel and efficient solutions that are formulated in a
multi-objective optimization framework. The designed framework enables
including arbitrary requirements and generating counterfactual explanations and
actionable recourse by choice. As a model-agnostic approach, CARE generates
multiple, diverse explanations for any black-box model in tabular
classification and regression settings. Several experiments on standard data
sets and black-box models demonstrate the effectiveness of our modular
framework and its superior performance compared to the baselines.
Related papers
- Interpret the Internal States of Recommendation Model with Sparse Autoencoder [26.021277330699963]
RecSAE is an automatic, generalizable probing method for interpreting the internal states of Recommendation models.
We train an autoencoder with sparsity constraints to reconstruct internal activations of recommendation models.
We automated the construction of concept dictionaries based on the relationship between latent activations and input item sequences.
arXiv Detail & Related papers (2024-11-09T08:22:31Z) - Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
Sparse Mixture of Expert (SMoE) models have emerged as a scalable alternative to dense models in language modeling.
Our research explores task-specific model pruning to inform decisions about designing SMoE architectures.
We introduce an adaptive task-aware pruning technique UNCURL to reduce the number of experts per MoE layer in an offline manner post-training.
arXiv Detail & Related papers (2024-09-02T22:35:03Z) - When factorization meets argumentation: towards argumentative explanations [0.0]
We propose a novel model that combines factorization-based methods with argumentation frameworks (AFs)
Our framework seamlessly incorporates side information, such as user contexts, leading to more accurate predictions.
arXiv Detail & Related papers (2024-05-13T19:16:28Z) - Increasing Performance And Sample Efficiency With Model-agnostic
Interactive Feature Attributions [3.0655581300025996]
We provide model-agnostic implementations for two popular explanation methods (Occlusion and Shapley values) to enforce entirely different attributions in the complex model.
We show how our proposed approach can significantly improve the model's performance only by augmenting its training dataset based on corrected explanations.
arXiv Detail & Related papers (2023-06-28T15:23:28Z) - VCNet: A self-explaining model for realistic counterfactual generation [52.77024349608834]
Counterfactual explanation is a class of methods to make local explanations of machine learning decisions.
We present VCNet-Variational Counter Net, a model architecture that combines a predictor and a counterfactual generator.
We show that VCNet is able to both generate predictions, and to generate counterfactual explanations without having to solve another minimisation problem.
arXiv Detail & Related papers (2022-12-21T08:45:32Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - ReLACE: Reinforcement Learning Agent for Counterfactual Explanations of
Arbitrary Predictive Models [6.939617874336667]
We introduce a model-agnostic algorithm to generate optimal counterfactual explanations.
Our method is easily applied to any black-box model, as this resembles the environment that the DRL agent interacts with.
In addition, we develop an algorithm to extract explainable decision rules from the DRL agent's policy, so as to make the process of generating CFs itself transparent.
arXiv Detail & Related papers (2021-10-22T17:08:49Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z) - Deep Conditional Transformation Models [0.0]
Learning the cumulative distribution function (CDF) of an outcome variable conditional on a set of features remains challenging.
Conditional transformation models provide a semi-parametric approach that allows to model a large class of conditional CDFs.
We propose a novel network architecture, provide details on different model definitions and derive suitable constraints.
arXiv Detail & Related papers (2020-10-15T16:25:45Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.