A predictive learning model can simulate temporal dynamics and context effects found in neural representations of continuous speech
- URL: http://arxiv.org/abs/2405.08237v1
- Date: Mon, 13 May 2024 23:36:19 GMT
- Title: A predictive learning model can simulate temporal dynamics and context effects found in neural representations of continuous speech
- Authors: Oli Danyi Liu, Hao Tang, Naomi Feldman, Sharon Goldwater,
- Abstract summary: Recent work in cognitive neuroscience has identified temporal and contextual characteristics in humans' neural encoding of speech.
In this study, we simulated similar analyses with representations extracted from a computational model that was trained on unlabelled speech.
Our simulations revealed temporal dynamics similar to those in brain signals, implying that these properties can arise without linguistic knowledge.
- Score: 11.707968216076075
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Speech perception involves storing and integrating sequentially presented items. Recent work in cognitive neuroscience has identified temporal and contextual characteristics in humans' neural encoding of speech that may facilitate this temporal processing. In this study, we simulated similar analyses with representations extracted from a computational model that was trained on unlabelled speech with the learning objective of predicting upcoming acoustics. Our simulations revealed temporal dynamics similar to those in brain signals, implying that these properties can arise without linguistic knowledge. Another property shared between brains and the model is that the encoding patterns of phonemes support some degree of cross-context generalization. However, we found evidence that the effectiveness of these generalizations depends on the specific contexts, which suggests that this analysis alone is insufficient to support the presence of context-invariant encoding.
Related papers
- Analysis of Argument Structure Constructions in a Deep Recurrent Language Model [0.0]
We explore the representation and processing of Argument Structure Constructions (ASCs) in a recurrent neural language model.
Our results show that sentence representations form distinct clusters corresponding to the four ASCs across all hidden layers.
This indicates that even a relatively simple, brain-constrained recurrent neural network can effectively differentiate between various construction types.
arXiv Detail & Related papers (2024-08-06T09:27:41Z) - Investigating the Timescales of Language Processing with EEG and Language Models [0.0]
This study explores the temporal dynamics of language processing by examining the alignment between word representations from a pre-trained language model and EEG data.
Using a Temporal Response Function (TRF) model, we investigate how neural activity corresponds to model representations across different layers.
Our analysis reveals patterns in TRFs from distinct layers, highlighting varying contributions to lexical and compositional processing.
arXiv Detail & Related papers (2024-06-28T12:49:27Z) - Perception of Phonological Assimilation by Neural Speech Recognition Models [3.4173734484549625]
This article explores how the neural speech recognition model Wav2Vec2 perceives assimilated sounds.
Using psycholinguistic stimuli, we analyze how various linguistic context cues influence compensation patterns in the model's output.
arXiv Detail & Related papers (2024-06-21T15:58:22Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
We present a physiologically inspired speech recognition architecture compatible and scalable with deep learning frameworks.
We show end-to-end gradient descent training leads to the emergence of neural oscillations in the central spiking neural network.
Our findings highlight the crucial inhibitory role of feedback mechanisms, such as spike frequency adaptation and recurrent connections, in regulating and synchronising neural activity to improve recognition performance.
arXiv Detail & Related papers (2024-04-22T09:40:07Z) - The neural dynamics of auditory word recognition and integration [21.582292050622456]
We present a computational model of word recognition which formalizes this perceptual process in Bayesian decision theory.
We fit this model to explain scalp EEG signals recorded as subjects passively listened to a fictional story.
The model reveals distinct neural processing of words depending on whether or not they can be quickly recognized.
arXiv Detail & Related papers (2023-05-22T18:06:32Z) - Deep Neural Convolutive Matrix Factorization for Articulatory
Representation Decomposition [48.56414496900755]
This work uses a neural implementation of convolutive sparse matrix factorization to decompose the articulatory data into interpretable gestures and gestural scores.
Phoneme recognition experiments were additionally performed to show that gestural scores indeed code phonological information successfully.
arXiv Detail & Related papers (2022-04-01T14:25:19Z) - A Latent-Variable Model for Intrinsic Probing [93.62808331764072]
We propose a novel latent-variable formulation for constructing intrinsic probes.
We find empirical evidence that pre-trained representations develop a cross-lingually entangled notion of morphosyntax.
arXiv Detail & Related papers (2022-01-20T15:01:12Z) - Preliminary study on using vector quantization latent spaces for TTS/VC
systems with consistent performance [55.10864476206503]
We investigate the use of quantized vectors to model the latent linguistic embedding.
By enforcing different policies over the latent spaces in the training, we are able to obtain a latent linguistic embedding.
Our experiments show that the voice cloning system built with vector quantization has only a small degradation in terms of perceptive evaluations.
arXiv Detail & Related papers (2021-06-25T07:51:35Z) - Decomposing lexical and compositional syntax and semantics with deep
language models [82.81964713263483]
The activations of language transformers like GPT2 have been shown to linearly map onto brain activity during speech comprehension.
Here, we propose a taxonomy to factorize the high-dimensional activations of language models into four classes: lexical, compositional, syntactic, and semantic representations.
The results highlight two findings. First, compositional representations recruit a more widespread cortical network than lexical ones, and encompass the bilateral temporal, parietal and prefrontal cortices.
arXiv Detail & Related papers (2021-03-02T10:24:05Z) - Mechanisms for Handling Nested Dependencies in Neural-Network Language
Models and Humans [75.15855405318855]
We studied whether a modern artificial neural network trained with "deep learning" methods mimics a central aspect of human sentence processing.
Although the network was solely trained to predict the next word in a large corpus, analysis showed the emergence of specialized units that successfully handled local and long-distance syntactic agreement.
We tested the model's predictions in a behavioral experiment where humans detected violations in number agreement in sentences with systematic variations in the singular/plural status of multiple nouns.
arXiv Detail & Related papers (2020-06-19T12:00:05Z) - Analyzing analytical methods: The case of phonology in neural models of
spoken language [44.00588930401902]
We study the case of representations of phonology in neural network models of spoken language.
We use two commonly applied analytical techniques to quantify to what extent neural activation patterns encode phonemes and phoneme sequences.
arXiv Detail & Related papers (2020-04-15T13:04:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.