Investigating the Timescales of Language Processing with EEG and Language Models
- URL: http://arxiv.org/abs/2406.19884v2
- Date: Wed, 31 Jul 2024 11:50:54 GMT
- Title: Investigating the Timescales of Language Processing with EEG and Language Models
- Authors: Davide Turco, Conor Houghton,
- Abstract summary: This study explores the temporal dynamics of language processing by examining the alignment between word representations from a pre-trained language model and EEG data.
Using a Temporal Response Function (TRF) model, we investigate how neural activity corresponds to model representations across different layers.
Our analysis reveals patterns in TRFs from distinct layers, highlighting varying contributions to lexical and compositional processing.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study explores the temporal dynamics of language processing by examining the alignment between word representations from a pre-trained transformer-based language model, and EEG data. Using a Temporal Response Function (TRF) model, we investigate how neural activity corresponds to model representations across different layers, revealing insights into the interaction between artificial language models and brain responses during language comprehension. Our analysis reveals patterns in TRFs from distinct layers, highlighting varying contributions to lexical and compositional processing. Additionally, we used linear discriminant analysis (LDA) to isolate part-of-speech (POS) representations, offering insights into their influence on neural responses and the underlying mechanisms of syntactic processing. These findings underscore EEG's utility for probing language processing dynamics with high temporal resolution. By bridging artificial language models and neural activity, this study advances our understanding of their interaction at fine timescales.
Related papers
- A generative framework to bridge data-driven models and scientific theories in language neuroscience [84.76462599023802]
We present generative explanation-mediated validation, a framework for generating concise explanations of language selectivity in the brain.
We show that explanatory accuracy is closely related to the predictive power and stability of the underlying statistical models.
arXiv Detail & Related papers (2024-10-01T15:57:48Z) - Analysis of Argument Structure Constructions in a Deep Recurrent Language Model [0.0]
We explore the representation and processing of Argument Structure Constructions (ASCs) in a recurrent neural language model.
Our results show that sentence representations form distinct clusters corresponding to the four ASCs across all hidden layers.
This indicates that even a relatively simple, brain-constrained recurrent neural network can effectively differentiate between various construction types.
arXiv Detail & Related papers (2024-08-06T09:27:41Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
Recent advances in explainable AI have made it possible to mitigate limitations by leveraging improved explanations for Transformers.
We use BiLRP, an extension developed for computing second-order explanations in bilinear similarity models, to investigate which feature interactions drive similarity in NLP models.
Our findings contribute to a deeper understanding of different semantic similarity tasks and models, highlighting how novel explainable AI methods enable in-depth analyses and corpus-level insights.
arXiv Detail & Related papers (2024-05-10T17:11:31Z) - Mapping EEG Signals to Visual Stimuli: A Deep Learning Approach to Match
vs. Mismatch Classification [28.186129896907694]
We propose a "match-vs-mismatch" deep learning model to classify whether a video clip induces excitatory responses in recorded EEG signals.
We demonstrate that the proposed model is able to achieve the highest accuracy on unseen subjects.
These results have the potential to facilitate the development of neural recording-based video reconstruction.
arXiv Detail & Related papers (2023-09-08T06:37:25Z) - Self-supervised models of audio effectively explain human cortical
responses to speech [71.57870452667369]
We capitalize on the progress of self-supervised speech representation learning to create new state-of-the-art models of the human auditory system.
We show that these results show that self-supervised models effectively capture the hierarchy of information relevant to different stages of speech processing in human cortex.
arXiv Detail & Related papers (2022-05-27T22:04:02Z) - Dependency-based Mixture Language Models [53.152011258252315]
We introduce the Dependency-based Mixture Language Models.
In detail, we first train neural language models with a novel dependency modeling objective.
We then formulate the next-token probability by mixing the previous dependency modeling probability distributions with self-attention.
arXiv Detail & Related papers (2022-03-19T06:28:30Z) - The Grammar-Learning Trajectories of Neural Language Models [42.32479280480742]
We show that neural language models acquire linguistic phenomena in a similar order, despite having different end performances over the data.
Results suggest that NLMs exhibit consistent developmental'' stages.
arXiv Detail & Related papers (2021-09-13T16:17:23Z) - Correlation based Multi-phasal models for improved imagined speech EEG
recognition [22.196642357767338]
This work aims to profit from the parallel information contained in multi-phasal EEG data recorded while speaking, imagining and performing articulatory movements corresponding to specific speech units.
A bi-phase common representation learning module using neural networks is designed to model the correlation and between an analysis phase and a support phase.
The proposed approach further handles the non-availability of multi-phasal data during decoding.
arXiv Detail & Related papers (2020-11-04T09:39:53Z) - Mechanisms for Handling Nested Dependencies in Neural-Network Language
Models and Humans [75.15855405318855]
We studied whether a modern artificial neural network trained with "deep learning" methods mimics a central aspect of human sentence processing.
Although the network was solely trained to predict the next word in a large corpus, analysis showed the emergence of specialized units that successfully handled local and long-distance syntactic agreement.
We tested the model's predictions in a behavioral experiment where humans detected violations in number agreement in sentences with systematic variations in the singular/plural status of multiple nouns.
arXiv Detail & Related papers (2020-06-19T12:00:05Z) - Data Augmentation for Spoken Language Understanding via Pretrained
Language Models [113.56329266325902]
Training of spoken language understanding (SLU) models often faces the problem of data scarcity.
We put forward a data augmentation method using pretrained language models to boost the variability and accuracy of generated utterances.
arXiv Detail & Related papers (2020-04-29T04:07:12Z) - Analyzing analytical methods: The case of phonology in neural models of
spoken language [44.00588930401902]
We study the case of representations of phonology in neural network models of spoken language.
We use two commonly applied analytical techniques to quantify to what extent neural activation patterns encode phonemes and phoneme sequences.
arXiv Detail & Related papers (2020-04-15T13:04:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.