論文の概要: SpeechVerse: A Large-scale Generalizable Audio Language Model
- arxiv url: http://arxiv.org/abs/2405.08295v1
- Date: Tue, 14 May 2024 03:33:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 15:08:02.509715
- Title: SpeechVerse: A Large-scale Generalizable Audio Language Model
- Title(参考訳): SpeechVerse: 大規模汎用型オーディオ言語モデル
- Authors: Nilaksh Das, Saket Dingliwal, Srikanth Ronanki, Rohit Paturi, David Huang, Prashant Mathur, Jie Yuan, Dhanush Bekal, Xing Niu, Sai Muralidhar Jayanthi, Xilai Li, Karel Mundnich, Monica Sunkara, Sundararajan Srinivasan, Kyu J Han, Katrin Kirchhoff,
- Abstract要約: SpeechVerseは堅牢なマルチタスクトレーニングおよびカリキュラム学習フレームワークである。
学習可能なパラメータの小さなセットを通じて、事前訓練された音声とテキスト基礎モデルを組み合わせる。
実験により、我々のマルチタスクSpeechVerseモデルは、従来のタスク固有のベースラインよりも11タスク中9タスクの方が優れていることが判明した。
- 参考スコア(独自算出の注目度): 36.69414454239298
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have shown incredible proficiency in performing tasks that require semantic understanding of natural language instructions. Recently, many works have further expanded this capability to perceive multimodal audio and text inputs, but their capabilities are often limited to specific fine-tuned tasks such as automatic speech recognition and translation. We therefore develop SpeechVerse, a robust multi-task training and curriculum learning framework that combines pre-trained speech and text foundation models via a small set of learnable parameters, while keeping the pre-trained models frozen during training. The models are instruction finetuned using continuous latent representations extracted from the speech foundation model to achieve optimal zero-shot performance on a diverse range of speech processing tasks using natural language instructions. We perform extensive benchmarking that includes comparing our model performance against traditional baselines across several datasets and tasks. Furthermore, we evaluate the model's capability for generalized instruction following by testing on out-of-domain datasets, novel prompts, and unseen tasks. Our empirical experiments reveal that our multi-task SpeechVerse model is even superior to conventional task-specific baselines on 9 out of the 11 tasks.
- Abstract(参考訳): 大規模言語モデル(LLM)は、自然言語命令の意味的理解を必要とするタスクの実行において、驚くほどの熟練度を示している。
近年,マルチモーダル音声やテキスト入力を知覚するために,この機能をさらに拡張する研究が数多く行われているが,その能力は音声認識や翻訳など,特定の微調整タスクに限られることが多い。
そこで我々は,学習可能なパラメータの小さなセットを通じて,事前学習した音声とテキストの基盤モデルを組み合わせた,堅牢なマルチタスク学習およびカリキュラム学習フレームワークであるSpeechVerseを開発した。
音声基礎モデルから抽出した連続潜時表現を用いて命令を微調整し,自然言語命令を用いた多種多様な音声処理タスクにおいて最適なゼロショット性能を実現する。
モデルパフォーマンスを、いくつかのデータセットやタスクにわたる従来のベースラインと比較するなど、広範なベンチマークを行います。
さらに、ドメイン外のデータセット、新しいプロンプト、目に見えないタスクをテストすることによって、一般化された命令のモデル能力を評価する。
実験により、我々のマルチタスクSpeechVerseモデルは、従来のタスク固有のベースラインよりも11タスク中9タスクの方が優れていることが判明した。
関連論文リスト
- An Adapter-Based Unified Model for Multiple Spoken Language Processing Tasks [3.015760169663536]
複数の音声言語処理タスクを処理可能な統一モデルの開発において,アダプタベースの微調整の可能性を検討する。
アダプタをベースとしたファインチューニングにより、単一エンコーダデコーダモデルにより、平均18.4%の精度で複数の音声処理タスクを実行できることを示す。
論文 参考訳(メタデータ) (2024-06-20T21:39:04Z) - WavLLM: Towards Robust and Adaptive Speech Large Language Model [94.04010017961917]
本稿では,2つのエンコーダを持つ頑健で適応的な音声大言語モデルであるWavLLMと,プロンプト対応のLoRA重み付けアダプタを紹介する。
ASR, ST, SV, ERなどのタスクを含むユニバーサル音声ベンチマークにおいて提案手法の有効性を検証し, SQA用ガオカオ英語聴取理解セット, CoT 評価セットなどの特殊データセットに適用する。
論文 参考訳(メタデータ) (2024-03-31T12:01:32Z) - Few-Shot Spoken Language Understanding via Joint Speech-Text Models [18.193191170754744]
テキストと協調的に事前学習した音声表現モデルに関する最近の研究は、音声表現の改善の可能性を示している。
このような共有表現を活用して、音声言語理解タスクにおける限られたデータ可用性の持続的課題に対処する。
事前訓練された音声テキストモデルを用いることで、テキスト上で微調整されたモデルを音声テストデータに効果的に転送できることが分かる。
論文 参考訳(メタデータ) (2023-10-09T17:59:21Z) - UniverSLU: Universal Spoken Language Understanding for Diverse Tasks with Natural Language Instructions [64.50935101415776]
我々は,様々な音声言語理解(SLU)タスクを共同で行う単一モデルを構築した。
我々は17のデータセットと9の言語にまたがる12の音声分類とシーケンス生成タスクタイプに対して,1つのマルチタスク学習モデル"UniverSLU"の有効性を実証した。
論文 参考訳(メタデータ) (2023-10-04T17:10:23Z) - Dynamic-SUPERB: Towards A Dynamic, Collaborative, and Comprehensive Instruction-Tuning Benchmark for Speech [107.81472531864195]
テキスト言語モデルは、よく整形された命令が与えられたときに、目に見えないタスクに一般化する際、顕著なゼロショット能力を示している。
ゼロショット方式で複数のタスクを実行するための命令チューニングを活用できるユニバーサル音声モデルを構築するためのベンチマークであるDynamic-SUPERBを提案する。
論文 参考訳(メタデータ) (2023-09-18T06:43:30Z) - An Exploration of Prompt Tuning on Generative Spoken Language Model for
Speech Processing Tasks [112.1942546460814]
生成音声言語モデル(GSLM)に基づく音声処理タスクの即時チューニングパラダイムの最初の検討について報告する。
実験結果から, 学習可能なパラメータが少ない音声分類タスクにおいて, 高精度なダウンストリームモデルよりも, 即時チューニング手法が競合性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2022-03-31T03:26:55Z) - WavLM: Large-Scale Self-Supervised Pre-Training for Full Stack Speech
Processing [102.45426364965887]
そこで本研究では,フルスタックダウンストリーム音声タスクを解決するための,事前学習型モデルWavLMを提案する。
WavLMはHuBERTフレームワークに基づいて構築されており、音声コンテンツモデリングと話者アイデンティティ保存の両方に重点を置いている。
トレーニングデータセットを60k時間から94k時間までの公開オーディオデータにスケールアップし、そのトレーニング手順を最適化して表現抽出を改善する。
論文 参考訳(メタデータ) (2021-10-26T17:55:19Z) - Multitask Prompted Training Enables Zero-Shot Task Generalization [70.12770442071657]
本研究では,一般的な自然言語タスクを人間に読まれる入力形式にマッピングするシステムを開発した。
様々なタスクをカバーしたマルチタスクミックス上に,事前学習したエンコーダ・デコーダモデルを微調整する。
このモデルは、いくつかの標準データセット上で強力なゼロショット性能を達成し、しばしば16倍のサイズのモデルより優れている。
論文 参考訳(メタデータ) (2021-10-15T17:08:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。