Measurement-based quantum machine learning
- URL: http://arxiv.org/abs/2405.08319v1
- Date: Tue, 14 May 2024 05:17:01 GMT
- Title: Measurement-based quantum machine learning
- Authors: Luis Mantilla Calderón, Polina Feldmann, Robert Raussendorf, Dmytro Bondarenko,
- Abstract summary: A quantum neural network (QNN) is an object that extends the notion of a classical neural network to quantum models for quantum data.
We propose a universal QNN in this framework which we call the multiple-triangle ansatz (MuTA)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A quantum neural network (QNN) is an object that extends the notion of a classical neural network to quantum models for quantum data. We can create a QNN by parametrizing a quantum process and then using it to model unknown relations between quantum states. In this paper, we explore how to use measurement-based quantum computation for quantum machine learning problems and propose a universal QNN in this framework which we call the multiple-triangle ansatz (MuTA). Using the proposed QNN, we solve several tasks, including learning a universal set of gates, optimizing measurement with post-processing, learning a quantum instrument, and the classification of classical data. Finally, we discuss how to train an ansatz under the hardware constraints imposed by photonic Gottesman-Kitaev-Preskill qubits. Our work demonstrates the feasibility of using measurement-based quantum computation as a framework for quantum machine learning algorithms.
Related papers
- Quantum Hamiltonian Embedding of Images for Data Reuploading Classifiers [0.9374652839580181]
One of the first considerations is the design of the quantum machine learning model itself.
Recent research has started questioning whether quantum advantage via speedup is the right goal for quantum machine learning.
In this paper, we take an alternative approach by incorporating the design of classical deep learning algorithms to the design of quantum neural networks.
arXiv Detail & Related papers (2024-07-19T06:31:22Z) - Randomness-enhanced expressivity of quantum neural networks [7.7991930692137466]
We propose a novel approach to enhance the expressivity of QNNs by incorporating randomness into quantum circuits.
We prove that our approach can accurately approximate arbitrary target operators using Uhlmann's theorem for majorization.
We find the expressivity of QNNs is enhanced by introducing randomness for multiple learning tasks, which could have broad application in quantum machine learning.
arXiv Detail & Related papers (2023-08-09T07:17:13Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Scalable Quantum Neural Networks for Classification [11.839990651381617]
We propose an approach to implementing a scalable quantum neural network (SQNN) by utilizing the quantum resource of multiple small-size quantum devices cooperatively.
In an SQNN system, several quantum devices are used as quantum feature extractors, extracting local features from an input instance in parallel, and a quantum device works as a quantum predictor.
arXiv Detail & Related papers (2022-08-04T20:35:03Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
We propose a new quantum gates distance that characterizes the gates' action over every quantum state.
Our approach significantly outperforms the benchmark on three empirical quantum machine learning problems.
arXiv Detail & Related papers (2022-06-28T16:23:24Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - QTN-VQC: An End-to-End Learning framework for Quantum Neural Networks [71.14713348443465]
We introduce a trainable quantum tensor network (QTN) for quantum embedding on a variational quantum circuit (VQC)
QTN enables an end-to-end parametric model pipeline, namely QTN-VQC, from the generation of quantum embedding to the output measurement.
Our experiments on the MNIST dataset demonstrate the advantages of QTN for quantum embedding over other quantum embedding approaches.
arXiv Detail & Related papers (2021-10-06T14:44:51Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - TensorFlow Quantum: A Software Framework for Quantum Machine Learning [36.75544801185366]
We introduce Quantum (TFQ), an open source library for the rapid prototyping of hybrid quantum-classical models for classical or quantum data.
We demonstrate how one can apply TFQ to tackle advanced quantum learning tasks including meta-learning, layerwise learning, Hamiltonian learning, sampling thermal states, variational quantum eigensolvers, classification of quantum phase transitions, generative adversarial networks, and reinforcement learning.
arXiv Detail & Related papers (2020-03-06T01:31:43Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.