Entanglement Classification via Neural Network Quantum States
- URL: http://arxiv.org/abs/1912.13207v1
- Date: Tue, 31 Dec 2019 07:40:23 GMT
- Title: Entanglement Classification via Neural Network Quantum States
- Authors: Cillian Harney, Stefano Pirandola, Alessandro Ferraro, Mauro
Paternostro
- Abstract summary: In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
- Score: 58.720142291102135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of classifying the entanglement properties of a multipartite quantum
state poses a remarkable challenge due to the exponentially increasing number
of ways in which quantum systems can share quantum correlations. Tackling such
challenge requires a combination of sophisticated theoretical and computational
techniques. In this paper we combine machine-learning tools and the theory of
quantum entanglement to perform entanglement classification for multipartite
qubit systems in pure states. We use a parameterisation of quantum systems
using artificial neural networks in a restricted Boltzmann machine (RBM)
architecture, known as Neural Network Quantum States (NNS), whose entanglement
properties can be deduced via a constrained, reinforcement learning procedure.
In this way, Separable Neural Network States (SNNS) can be used to build
entanglement witnesses for any target state.
Related papers
- Shedding Light on the Future: Exploring Quantum Neural Networks through Optics [3.1935899800030096]
Quantum neural networks (QNNs) play an important role as an emerging technology in the rapidly developing field of quantum machine learning.
This article reviews the concept of QNNs and their physical realizations, particularly implementations based on quantum optics.
arXiv Detail & Related papers (2024-09-04T08:49:57Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - Quantum-enhanced metrology with network states [8.515162179098382]
We prove a general bound that limits the performance of using quantum network states to estimate a global parameter.
Our work establishes both the limitation and the possibility of quantum metrology within quantum networks.
arXiv Detail & Related papers (2023-07-15T09:46:35Z) - Learning Quantum Processes with Memory -- Quantum Recurrent Neural
Networks [0.0]
We propose fully quantum recurrent neural networks, based on dissipative quantum neural networks.
We demonstrate the potential of these algorithms to learn complex quantum processes with memory.
Numerical simulations indicate that our quantum recurrent neural networks exhibit a striking ability to generalise from small training sets.
arXiv Detail & Related papers (2023-01-19T16:58:39Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Scalable Quantum Neural Networks for Classification [11.839990651381617]
We propose an approach to implementing a scalable quantum neural network (SQNN) by utilizing the quantum resource of multiple small-size quantum devices cooperatively.
In an SQNN system, several quantum devices are used as quantum feature extractors, extracting local features from an input instance in parallel, and a quantum device works as a quantum predictor.
arXiv Detail & Related papers (2022-08-04T20:35:03Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Mixed State Entanglement Classification using Artificial Neural Networks [0.0]
Separable Neural Network Quantum States employs a neural network inspired parameterisation of quantum states whose entanglement properties are explicitly programmable.
We extend the use of SNNS to mixed, multipartite states, providing a versatile and efficient tool for the investigation of intricately entangled quantum systems.
arXiv Detail & Related papers (2021-02-11T14:59:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.