論文の概要: Perivascular space Identification Nnunet for Generalised Usage (PINGU)
- arxiv url: http://arxiv.org/abs/2405.08337v2
- Date: Fri, 17 May 2024 06:47:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 11:55:15.353014
- Title: Perivascular space Identification Nnunet for Generalised Usage (PINGU)
- Title(参考訳): 一般用(PINGU)における血管周囲空間同定
- Authors: Benjamin Sinclair, Lucy Vivash, Jasmine Moses, Miranda Lynch, William Pham, Karina Dorfman, Cassandra Marotta, Shaun Koh, Jacob Bunyamin, Ella Rowsthorn, Alex Jarema, Himashi Peiris, Zhaolin Chen, Sandy R Shultz, David K Wright, Dexiao Kong, Sharon L. Naismith, Terence J. OBrien, Meng Law,
- Abstract要約: 末梢血管空間(PVSs)は、脳の廃棄物浄化系の中心的な構成要素であるリンパ管系を形成する。
これらの構造はMRI画像で見ることができ、その形態は老化や神経疾患と関連している。
- 参考スコア(独自算出の注目度): 5.861501989634817
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Perivascular spaces(PVSs) form a central component of the brain\'s waste clearance system, the glymphatic system. These structures are visible on MRI images, and their morphology is associated with aging and neurological disease. Manual quantification of PVS is time consuming and subjective. Numerous deep learning methods for PVS segmentation have been developed, however the majority have been developed and evaluated on homogenous datasets and high resolution scans, perhaps limiting their applicability for the wide range of image qualities acquired in clinic and research. In this work we train a nnUNet, a top-performing biomedical image segmentation algorithm, on a heterogenous training sample of manually segmented MRI images of a range of different qualities and resolutions from 6 different datasets. These are compared to publicly available deep learning methods for 3D segmentation of PVS. The resulting model, PINGU (Perivascular space Identification Nnunet for Generalised Usage), achieved voxel and cluster level dice scores of 0.50(SD=0.15), 0.63(0.17) in the white matter(WM), and 0.54(0.11), 0.66(0.17) in the basal ganglia(BG). Performance on data from unseen sites was substantially lower for both PINGU(0.20-0.38(WM, voxel), 0.29-0.58(WM, cluster), 0.22-0.36(BG, voxel), 0.46-0.60(BG, cluster)) and the publicly available algorithms(0.18-0.30(WM, voxel), 0.29-0.38(WM cluster), 0.10-0.20(BG, voxel), 0.15-0.37(BG, cluster)), but PINGU strongly outperformed the publicly available algorithms, particularly in the BG. Finally, training PINGU on manual segmentations from a single site with homogenous scan properties gave marginally lower performances on internal cross-validation, but in some cases gave higher performance on external validation. PINGU stands out as broad-use PVS segmentation tool, with particular strength in the BG, an area of PVS related to vascular disease and pathology.
- Abstract(参考訳): 血管周囲の空間(PVSs)は、グリフ系(英語版)である脳の廃棄物クリアランス系の中心的な構成要素である。
これらの構造はMRI画像で見ることができ、その形態は老化や神経疾患と関連している。
PVSのマニュアル定量化は時間がかかり主観的である。
PVSセグメンテーションのための多くの深層学習法が開発されているが、その大部分は同種データセットや高分解能スキャンで開発・評価されており、おそらくクリニックや研究で得られた幅広い画像品質に対する適用性を制限している。
本研究では、6つの異なるデータセットから、さまざまな品質と解像度のMRI画像を手動で分割する異種トレーニングサンプルを用いて、トップパフォーマンスのバイオメディカルイメージセグメンテーションアルゴリズムであるnnUNetをトレーニングする。
これらは、PVSの3Dセグメンテーションのための公開のディープラーニング手法と比較される。
PINGU (Perivascular space Identification Nnunet for Generalized Usage) は、白質(WM)では0.50(SD=0.15), 0.63(0.17),基底神経節(BG)では0.54(0.11), 0.66(0.17)のボクセルとクラスターレベルのダイススコアを得た。
PINGU(0.20-0.38(WM, voxel), 0.29-0.58(WM, cluster), 0.22-0.36(BG, voxel), 0.46-0.60(BG, cluster))と一般に公開されているアルゴリズム(0.18-0.30(WM, voxel), 0.29-0.38(WM cluster), 0.10-0.20(BG, voxel), 0.15-0.37(BG, cluster))ではかなり低かったが、PINGUは一般に公開されているアルゴリズム(特にBGでは特に優れていた。
最後に、PINGUを1つのサイトから手動セグメンテーションでトレーニングすると、内部クロスバリデーションの性能は極端に低下するが、いくつかのケースでは外部バリデーションのパフォーマンスが向上した。
PINGUは広義のPVSセグメンテーションツールであり、特にBGは血管疾患や病理に関連するPVSの領域である。
関連論文リスト
- GCtx-UNet: Efficient Network for Medical Image Segmentation [0.2353157426758003]
GCtx-UNetは軽量なセグメンテーションアーキテクチャで、最先端のアプローチよりも正確さでグローバルおよびローカルの画像特徴をキャプチャできる。
GCtx-UNetは、Synapseの多臓器腹部CTデータセット、ACDCの心臓MRIデータセット、およびいくつかのポリープセグメンテーションデータセットで評価される。
論文 参考訳(メタデータ) (2024-06-09T19:17:14Z) - TotalSegmentator MRI: Sequence-Independent Segmentation of 59 Anatomical Structures in MR images [62.53931644063323]
本研究では,TotalSegmentatorをMR画像に拡張した。
このデータセットに基づいてnnU-Netセグメンテーションアルゴリズムを訓練し、類似度係数(Dice)を計算し、モデルの性能を評価した。
このモデルは、他の2つの公開セグメンテーションモデル(Dice score 0.824 vs 0.762; p0.001 and 0.762 versus 0.542; p)を大きく上回った。
論文 参考訳(メタデータ) (2024-05-29T20:15:54Z) - Robust Tumor Segmentation with Hyperspectral Imaging and Graph Neural
Networks [31.87960207119459]
より堅牢でスムーズなセグメンテーションのために,タイルの空間的文脈を利用した改良手法を提案する。
タイルの不規則な形状に対処するため,グラフニューラルネットワーク(GNN)を用いて周辺地域のコンテキスト情報を伝播する。
以上の結果から, 文脈認識型GNNアルゴリズムは, HSI画像上の腫瘍の区切りを頑健に検出できることが示唆された。
論文 参考訳(メタデータ) (2023-11-20T14:07:38Z) - WATUNet: A Deep Neural Network for Segmentation of Volumetric Sweep
Imaging Ultrasound [1.2903292694072621]
ボリューム・スイープ・イメージング(VSI)は、訓練を受けていないオペレーターが高品質な超音波画像をキャプチャできる革新的な手法である。
本稿ではWavelet_Attention_UNet(WATUNet)と呼ばれる新しいセグメンテーションモデルを提案する。
このモデルでは、簡単な接続ではなく、ウェーブレットゲート(WG)とアテンションゲート(AG)をエンコーダとデコーダの間に組み込んで、上記の制限を克服する。
論文 参考訳(メタデータ) (2023-11-17T20:32:37Z) - Semantic segmentation of surgical hyperspectral images under geometric
domain shifts [69.91792194237212]
本稿では、幾何学的アウト・オブ・ディストリビューション(OOD)データの存在下で、最先端のセマンティックセグメンテーションネットワークを初めて分析する。
有機移植(Organ transplantation)と呼ばれる専用の拡張技術により、一般化可能性にも対処する。
提案手法は,SOA DSCの最大67 % (RGB) と90% (HSI) を改善し,実際のOODテストデータ上での分配内性能と同等の性能を示す。
論文 参考訳(メタデータ) (2023-03-20T09:50:07Z) - Affinity Feature Strengthening for Accurate, Complete and Robust Vessel
Segmentation [48.638327652506284]
血管セグメンテーションは、冠動脈狭窄、網膜血管疾患、脳動脈瘤などの多くの医学的応用において重要である。
コントラストに敏感なマルチスケールアフィニティアプローチを用いて,幾何学的手法と画素単位のセグメンテーション特徴を連成的にモデル化する新しいアプローチであるAFNを提案する。
論文 参考訳(メタデータ) (2022-11-12T05:39:17Z) - Glo-In-One: Holistic Glomerular Detection, Segmentation, and Lesion
Characterization with Large-scale Web Image Mining [5.786726927985774]
我々はGlo-In-Oneツールキットを開発し、一行のコマンドで全体的球状検出、セグメンテーション、キャラクタリゼーションを実現する。
我々は,自己教師型ディープラーニングのアルゴリズム開発を促進するために,3万枚の未ラベルの球面画像の大規模なコレクションをリリースする。
論文 参考訳(メタデータ) (2022-05-31T21:22:10Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Exploration of Interpretability Techniques for Deep COVID-19
Classification using Chest X-ray Images [10.01138352319106]
5種類のディープラーニングモデル(ResNet18、ResNet34、InceptionV3、InceptionResNetV2、DenseNet161)とそれらのEnsembleは、Chest X-Ray画像を用いて、新型コロナウイルス、肺炎、健康な被験者を分類するために使用されている。
新型コロナウイルスの分類における平均的なMicro-F1スコアは0.66から0.875の範囲で、ネットワークモデルのアンサンブルは0.89である。
論文 参考訳(メタデータ) (2020-06-03T22:55:53Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
大規模Vertebrae Challenge(VerSe)は、2019年と2020年に開催されたMICCAI(International Conference on Medical Image Computing and Computer Assisted Intervention)と共同で設立された。
本評価の結果を報告するとともに,脊椎レベル,スキャンレベル,および異なる視野での性能変化について検討した。
論文 参考訳(メタデータ) (2020-01-24T21:09:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。