論文の概要: TP3M: Transformer-based Pseudo 3D Image Matching with Reference Image
- arxiv url: http://arxiv.org/abs/2405.08434v2
- Date: Mon, 12 Aug 2024 02:57:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-13 23:07:09.519761
- Title: TP3M: Transformer-based Pseudo 3D Image Matching with Reference Image
- Title(参考訳): TP3M:Pseudo 3D画像と参照画像のマッチング
- Authors: Liming Han, Zhaoxiang Liu, Shiguo Lian,
- Abstract要約: トランスフォーマーを用いた擬似3次元画像マッチング手法を提案する。
ソース画像から抽出した2D特徴を参照画像の助けを借りて3D特徴にアップグレードし、目的地画像から抽出した2D特徴にマッチする。
複数のデータセットに対する実験結果から, 提案手法は, ホモグラフィ推定, ポーズ推定, 視覚的ローカライゼーションのタスクにおいて, 最先端の課題を達成できることが示唆された。
- 参考スコア(独自算出の注目度): 0.9831489366502301
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Image matching is still challenging in such scenes with large viewpoints or illumination changes or with low textures. In this paper, we propose a Transformer-based pseudo 3D image matching method. It upgrades the 2D features extracted from the source image to 3D features with the help of a reference image and matches to the 2D features extracted from the destination image by the coarse-to-fine 3D matching. Our key discovery is that by introducing the reference image, the source image's fine points are screened and furtherly their feature descriptors are enriched from 2D to 3D, which improves the match performance with the destination image. Experimental results on multiple datasets show that the proposed method achieves the state-of-the-art on the tasks of homography estimation, pose estimation and visual localization especially in challenging scenes.
- Abstract(参考訳): 画像マッチングは、大きな視点や照明の変化、または低いテクスチャを持つシーンでは依然として難しい。
本論文では,トランスフォーマーを用いた擬似3次元画像マッチング手法を提案する。
ソース画像から抽出した2D特徴を基準画像の助けを借りて3D特徴にアップグレードし、粗い3Dマッチングにより目的地画像から抽出した2D特徴と一致する。
我々の重要な発見は、参照画像を導入することで、ソース画像の細かい点をスクリーニングし、さらに特徴記述子を2Dから3Dに富ませることで、目的地画像とのマッチング性能を向上させることである。
複数のデータセットに対する実験結果から,提案手法は,特に挑戦場面におけるホモグラフィー推定,ポーズ推定,視覚的局所化といったタスクにおいて,最先端の手法を実現することが示された。
関連論文リスト
- 3DiffTection: 3D Object Detection with Geometry-Aware Diffusion Features [70.50665869806188]
3DiffTectionは、単一の画像から3Dオブジェクトを検出する最先端の方法である。
拡散モデルを微調整し、単一の画像に条件付けされた新しいビュー合成を行う。
さらに、検出監視により、ターゲットデータ上でモデルをトレーニングする。
論文 参考訳(メタデータ) (2023-11-07T23:46:41Z) - EP2P-Loc: End-to-End 3D Point to 2D Pixel Localization for Large-Scale
Visual Localization [44.05930316729542]
本稿では,3次元点雲の大規模可視化手法EP2P-Locを提案する。
画像中の見えない3D点を除去する簡単なアルゴリズムを提案する。
このタスクで初めて、エンドツーエンドのトレーニングに差別化可能なツールを使用します。
論文 参考訳(メタデータ) (2023-09-14T07:06:36Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3Dは拡散モデルに基づく3Dアバター生成のためのテキスト・画像誘導生成モデルである。
我々のフレームワークは、トポロジカルかつ構造的に正しい幾何と高分解能なテクスチャを生成する。
論文 参考訳(メタデータ) (2023-08-18T17:55:47Z) - CheckerPose: Progressive Dense Keypoint Localization for Object Pose
Estimation with Graph Neural Network [66.24726878647543]
単一のRGB画像から固い物体の6-DoFのポーズを推定することは、非常に難しい課題である。
近年の研究では、高密度対応型解の大きな可能性を示している。
そこで本研究では,CheckerPoseというポーズ推定アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-03-29T17:30:53Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
フォトリアリスティック・ノベルビューを合成可能な高忠実度3次元生成対向ネットワーク(GAN)インバージョン・フレームワークを提案する。
提案手法は,1枚の画像から高忠実度3Dレンダリングを可能にし,AI生成3Dコンテンツの様々な応用に期待できる。
論文 参考訳(メタデータ) (2022-11-28T18:59:52Z) - Improving Feature-based Visual Localization by Geometry-Aided Matching [21.1967752160412]
外観情報と幾何学的文脈の両方を用いて2D-3D特徴マッチングを改善する新しい2D-3Dマッチング手法であるGeometry-Aided Matching (GAM)を導入する。
GAMは高精度を維持しながら2D-3Dマッチのリコールを大幅に強化することができる。
提案手法は,複数の視覚的ローカライゼーションデータセットの最先端結果を実現する。
論文 参考訳(メタデータ) (2022-11-16T07:02:12Z) - Bridged Transformer for Vision and Point Cloud 3D Object Detection [92.86856146086316]
Bridged Transformer (BrT) は、3Dオブジェクト検出のためのエンドツーエンドアーキテクチャである。
BrTは3Dオブジェクトと2Dオブジェクトのバウンディングボックスを、ポイントとイメージパッチの両方から識別する。
BrTがSUN RGB-DおよびScanNetV2データセットの最先端手法を上回ることを示す。
論文 参考訳(メタデータ) (2022-10-04T05:44:22Z) - Graph-DETR3D: Rethinking Overlapping Regions for Multi-View 3D Object
Detection [17.526914782562528]
グラフ構造学習(GSL)による多視点画像情報を自動的に集約するグラフDETR3Dを提案する。
我々の最良のモデルは、nuScenesテストリーダーボード上で49.5 NDSを達成し、様々な画像ビュー3Dオブジェクト検出器と比較して新しい最先端技術を実現している。
論文 参考訳(メタデータ) (2022-04-25T12:10:34Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
空間校正カメラで撮影した多視点画像から3次元ポーズを復元する手法を提案する。
我々は3次元形状を利用して、入力画像をカメラ視点から切り離したポーズの潜在表現に融合する。
アーキテクチャは、カメラプロジェクション演算子に学習した表現を条件付け、ビュー当たりの正確な2次元検出を生成する。
論文 参考訳(メタデータ) (2020-04-05T12:52:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。