論文の概要: Understanding the performance gap between online and offline alignment algorithms
- arxiv url: http://arxiv.org/abs/2405.08448v1
- Date: Tue, 14 May 2024 09:12:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 14:38:24.836926
- Title: Understanding the performance gap between online and offline alignment algorithms
- Title(参考訳): オンラインアライメントアルゴリズムとオフラインアライメントアルゴリズムのパフォーマンスギャップを理解する
- Authors: Yunhao Tang, Daniel Zhaohan Guo, Zeyu Zheng, Daniele Calandriello, Yuan Cao, Eugene Tarassov, Rémi Munos, Bernardo Ávila Pires, Michal Valko, Yong Cheng, Will Dabney,
- Abstract要約: オフラインのアルゴリズムは、ペアの分類が得意になるようにポリシーを訓練し、オンラインのアルゴリズムは世代ごとに良いことを示しています。
このことは、識別能力と生成能力の間のユニークな相互作用を示唆しており、これはサンプリングプロセスに大きく影響している。
我々の研究は、AIアライメントにおけるオンラインサンプリングの重要な役割に光を当て、オフラインアライメントアルゴリズムのある種の根本的な課題を示唆している。
- 参考スコア(独自算出の注目度): 63.137832242488926
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reinforcement learning from human feedback (RLHF) is the canonical framework for large language model alignment. However, rising popularity in offline alignment algorithms challenge the need for on-policy sampling in RLHF. Within the context of reward over-optimization, we start with an opening set of experiments that demonstrate the clear advantage of online methods over offline methods. This prompts us to investigate the causes to the performance discrepancy through a series of carefully designed experimental ablations. We show empirically that hypotheses such as offline data coverage and data quality by itself cannot convincingly explain the performance difference. We also find that while offline algorithms train policy to become good at pairwise classification, it is worse at generations; in the meantime the policies trained by online algorithms are good at generations while worse at pairwise classification. This hints at a unique interplay between discriminative and generative capabilities, which is greatly impacted by the sampling process. Lastly, we observe that the performance discrepancy persists for both contrastive and non-contrastive loss functions, and appears not to be addressed by simply scaling up policy networks. Taken together, our study sheds light on the pivotal role of on-policy sampling in AI alignment, and hints at certain fundamental challenges of offline alignment algorithms.
- Abstract(参考訳): 人間のフィードバックからの強化学習(RLHF)は、大規模言語モデルのアライメントのための標準フレームワークである。
しかし、オフラインアライメントアルゴリズムの人気が高まっているため、RLHFのオンラインサンプリングの必要性が高まっている。
報酬の過度な最適化のコンテキスト内では、オフラインメソッドよりもオンラインメソッドの明確な利点を示す実験のオープニングセットから始めます。
これにより、慎重に設計された実験的な改善を通じて、パフォーマンスの相違の原因を調べることができる。
オフラインデータカバレッジやデータ品質自体が性能の違いを説得力のある説明ができないという仮説を実証的に示す。
また、オフラインアルゴリズムはポリシーをペアワイドな分類に適するように訓練するが、世代によって悪くなる。一方、オンラインアルゴリズムによって訓練されたポリシーは世代ごとに良く、ペアワイドな分類には悪くなる。
このことは、識別能力と生成能力の間のユニークな相互作用を示唆しており、これはサンプリングプロセスに大きく影響している。
最後に、コントラストと非コントラストの両方の損失関数で性能差が持続し、単にポリシーネットワークのスケールアップによって対処されないように見える。
同時に、我々の研究は、AIアライメントにおけるオンラインサンプリングの重要部分について光を当て、オフラインアライメントアルゴリズムのある種の根本的な課題を示唆している。
関連論文リスト
- Simple Ingredients for Offline Reinforcement Learning [86.1988266277766]
オフライン強化学習アルゴリズムは、ターゲット下流タスクに高度に接続されたデータセットに有効であることが証明された。
既存の手法が多様なデータと競合することを示す。その性能は、関連するデータ収集によって著しく悪化するが、オフラインバッファに異なるタスクを追加するだけでよい。
アルゴリズム的な考慮以上のスケールが、パフォーマンスに影響を及ぼす重要な要因であることを示す。
論文 参考訳(メタデータ) (2024-03-19T18:57:53Z) - Iteratively Refined Behavior Regularization for Offline Reinforcement
Learning [57.10922880400715]
本稿では,保守的政策反復に基づく行動規則化を大幅に強化する新しいアルゴリズムを提案する。
行動規則化に使用される基準ポリシーを反復的に洗練することにより、保守的な政策更新は徐々に改善される。
D4RLベンチマークの実験結果から,本手法は従来のタスクのベースラインよりも優れていたことが示唆された。
論文 参考訳(メタデータ) (2023-06-09T07:46:24Z) - Efficient Online Reinforcement Learning with Offline Data [78.92501185886569]
オンライン学習時にオフラインデータを活用するために、既存のオフライン手法を単純に適用できることを示します。
私たちはこれらの設計選択を広範囲に改善し、パフォーマンスに最も影響を与える重要な要因を示します。
これらのシンプルなレコメンデーションの正しい適用によって、既存のアプローチよりも$mathbf2.5times$の改善が得られます。
論文 参考訳(メタデータ) (2023-02-06T17:30:22Z) - Bridging the Gap Between Offline and Online Reinforcement Learning
Evaluation Methodologies [6.303272140868826]
強化学習(Reinforcement Learning, RL)は、大規模な状態と行動空間を持つ環境で学習するアルゴリズムに対して、非常に有望であることを示す。
現在の深層RLアルゴリズムは、学習に膨大な量の環境相互作用を必要とする。
オフラインのRLアルゴリズムは、既存のログデータから学習プロセスをブートストラップすることでこの問題に対処しようとする。
論文 参考訳(メタデータ) (2022-12-15T20:36:10Z) - Boosting Offline Reinforcement Learning via Data Rebalancing [104.3767045977716]
オフライン強化学習(RL)は、学習ポリシーとデータセットの分散シフトによって問題となる。
本稿では,データセットの再サンプリングが分散サポートを一定に保っているという観察に基づいて,オフラインRLアルゴリズムをシンプルかつ効果的に向上させる手法を提案する。
ReD(Return-based Data Re Balance)メソッドをダブします。これは10行未満のコード変更で実装でき、無視できる実行時間を追加します。
論文 参考訳(メタデータ) (2022-10-17T16:34:01Z) - Discriminator-Weighted Offline Imitation Learning from Suboptimal
Demonstrations [5.760034336327491]
エージェントがオンライン環境を付加せずに最適な専門家行動ポリシーを学習することを目的としたオフライン学習(IL)の課題について検討する。
専門家と非専門家のデータを区別するために,新たな識別器を導入する。
提案アルゴリズムは,ベースラインアルゴリズムよりも高いリターンと高速なトレーニング速度を実現する。
論文 参考訳(メタデータ) (2022-07-20T17:29:04Z) - Federated Offline Reinforcement Learning [55.326673977320574]
マルチサイトマルコフ決定プロセスモデルを提案する。
我々は,オフラインRLを対象とした最初のフェデレーション最適化アルゴリズムを設計する。
提案アルゴリズムでは,学習ポリシーの準最適性は,データが分散していないような速度に匹敵する,理論的保証を与える。
論文 参考訳(メタデータ) (2022-06-11T18:03:26Z) - Reinforcement Learning with Sparse Rewards using Guidance from Offline
Demonstration [9.017416068706579]
実世界の強化学習(RL)における大きな課題は、報酬フィードバックの空間性である。
我々は,準最適行動ポリシーによって生成されたオフラインのデモデータを利用するアルゴリズムを開発した。
我々は、最先端アプローチよりもアルゴリズムの優れた性能を実証する。
論文 参考訳(メタデータ) (2022-02-09T18:45:40Z) - Offline Neural Contextual Bandits: Pessimism, Optimization and
Generalization [42.865641215856925]
本稿では,ニューラルネットワーク関数近似を用いた効率の良いオフラインコンテキスト帯域幅を提案する。
本手法は,従来のOPL法よりも分布シフトの軽度な条件下で,未知の文脈を一般化することを示す。
また, 実世界のOPL問題において, 提案手法の実証的有効性を示す。
論文 参考訳(メタデータ) (2021-11-27T03:57:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。