Active 6D Pose Estimation for Textureless Objects using Multi-View RGB Frames
- URL: http://arxiv.org/abs/2503.03726v1
- Date: Wed, 05 Mar 2025 18:28:32 GMT
- Title: Active 6D Pose Estimation for Textureless Objects using Multi-View RGB Frames
- Authors: Jun Yang, Wenjie Xue, Sahar Ghavidel, Steven L. Waslander,
- Abstract summary: Estimating the 6D pose of textureless objects from RBG images is an important problem in robotics.<n>We propose a comprehensive active perception framework for estimating the 6D poses of textureless objects using only RGB images.
- Score: 10.859307261818362
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Estimating the 6D pose of textureless objects from RBG images is an important problem in robotics. Due to appearance ambiguities, rotational symmetries, and severe occlusions, single-view based 6D pose estimators are still unable to handle a wide range of objects, motivating research towards multi-view pose estimation and next-best-view prediction that addresses these limitations. In this work, we propose a comprehensive active perception framework for estimating the 6D poses of textureless objects using only RGB images. Our approach is built upon a key idea: decoupling the 6D pose estimation into a sequential two-step process can greatly improve both accuracy and efficiency. First, we estimate the 3D translation of each object, resolving scale and depth ambiguities inherent to RGB images. These estimates are then used to simplify the subsequent task of determining the 3D orientation, which we achieve through canonical scale template matching. Building on this formulation, we then introduce an active perception strategy that predicts the next best camera viewpoint to capture an RGB image, effectively reducing object pose uncertainty and enhancing pose accuracy. We evaluate our method on the public ROBI dataset as well as on a transparent object dataset that we created. When evaluated using the same camera viewpoints, our multi-view pose estimation significantly outperforms state-of-the-art approaches. Furthermore, by leveraging our next-best-view strategy, our method achieves high object pose accuracy with substantially fewer viewpoints than heuristic-based policies.
Related papers
- Any6D: Model-free 6D Pose Estimation of Novel Objects [76.30057578269668]
We introduce Any6D, a model-free framework for 6D object pose estimation.
It requires only a single RGB-D anchor image to estimate both the 6D pose and size of unknown objects in novel scenes.
We evaluate our method on five challenging datasets.
arXiv Detail & Related papers (2025-03-24T13:46:21Z) - RDPN6D: Residual-based Dense Point-wise Network for 6Dof Object Pose Estimation Based on RGB-D Images [13.051302134031808]
We introduce a novel method for calculating the 6DoF pose of an object using a single RGB-D image.
Unlike existing methods that either directly predict objects' poses or rely on sparse keypoints for pose recovery, our approach addresses this challenging task using dense correspondence.
arXiv Detail & Related papers (2024-05-14T10:10:45Z) - Advancing 6D Pose Estimation in Augmented Reality -- Overcoming Projection Ambiguity with Uncontrolled Imagery [0.0]
This study addresses the challenge of accurate 6D pose estimation in Augmented Reality (AR)
We propose a novel approach that strategically decomposes the estimation of z-axis translation and focal length.
This methodology not only streamlines the 6D pose estimation process but also significantly enhances the accuracy of 3D object overlaying in AR settings.
arXiv Detail & Related papers (2024-03-20T09:22:22Z) - RGB-based Category-level Object Pose Estimation via Decoupled Metric
Scale Recovery [72.13154206106259]
We propose a novel pipeline that decouples the 6D pose and size estimation to mitigate the influence of imperfect scales on rigid transformations.
Specifically, we leverage a pre-trained monocular estimator to extract local geometric information.
A separate branch is designed to directly recover the metric scale of the object based on category-level statistics.
arXiv Detail & Related papers (2023-09-19T02:20:26Z) - Rigidity-Aware Detection for 6D Object Pose Estimation [60.88857851869196]
Most recent 6D object pose estimation methods first use object detection to obtain 2D bounding boxes before actually regressing the pose.
We propose a rigidity-aware detection method exploiting the fact that, in 6D pose estimation, the target objects are rigid.
Key to the success of our approach is a visibility map, which we propose to build using a minimum barrier distance between every pixel in the bounding box and the box boundary.
arXiv Detail & Related papers (2023-03-22T09:02:54Z) - 3D Neural Embedding Likelihood: Probabilistic Inverse Graphics for
Robust 6D Pose Estimation [50.15926681475939]
Inverse graphics aims to infer the 3D scene structure from 2D images.
We introduce probabilistic modeling to quantify uncertainty and achieve robustness in 6D pose estimation tasks.
3DNEL effectively combines learned neural embeddings from RGB with depth information to improve robustness in sim-to-real 6D object pose estimation from RGB-D images.
arXiv Detail & Related papers (2023-02-07T20:48:35Z) - MV6D: Multi-View 6D Pose Estimation on RGB-D Frames Using a Deep
Point-wise Voting Network [14.754297065772676]
We present a novel multi-view 6D pose estimation method called MV6D.
We base our approach on the PVN3D network that uses a single RGB-D image to predict keypoints of the target objects.
In contrast to current multi-view pose detection networks such as CosyPose, our MV6D can learn the fusion of multiple perspectives in an end-to-end manner.
arXiv Detail & Related papers (2022-08-01T23:34:43Z) - Coupled Iterative Refinement for 6D Multi-Object Pose Estimation [64.7198752089041]
Given a set of known 3D objects and an RGB or RGB-D input image, we detect and estimate the 6D pose of each object.
Our approach iteratively refines both pose and correspondence in a tightly coupled manner, allowing us to dynamically remove outliers to improve accuracy.
arXiv Detail & Related papers (2022-04-26T18:00:08Z) - Pose Estimation of Specific Rigid Objects [0.7931904787652707]
We address the problem of estimating the 6D pose of rigid objects from a single RGB or RGB-D input image.
This problem is of great importance to many application fields such as robotic manipulation, augmented reality, and autonomous driving.
arXiv Detail & Related papers (2021-12-30T14:36:47Z) - SO-Pose: Exploiting Self-Occlusion for Direct 6D Pose Estimation [98.83762558394345]
SO-Pose is a framework for regressing all 6 degrees-of-freedom (6DoF) for the object pose in a cluttered environment from a single RGB image.
We introduce a novel reasoning about self-occlusion, in order to establish a two-layer representation for 3D objects.
Cross-layer consistencies that align correspondences, self-occlusion and 6D pose, we can further improve accuracy and robustness.
arXiv Detail & Related papers (2021-08-18T19:49:29Z) - Spatial Attention Improves Iterative 6D Object Pose Estimation [52.365075652976735]
We propose a new method for 6D pose estimation refinement from RGB images.
Our main insight is that after the initial pose estimate, it is important to pay attention to distinct spatial features of the object.
We experimentally show that this approach learns to attend to salient spatial features and learns to ignore occluded parts of the object, leading to better pose estimation across datasets.
arXiv Detail & Related papers (2021-01-05T17:18:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.