Generalizing Knowledge Graph Embedding with Universal Orthogonal Parameterization
- URL: http://arxiv.org/abs/2405.08540v1
- Date: Tue, 14 May 2024 12:26:19 GMT
- Title: Generalizing Knowledge Graph Embedding with Universal Orthogonal Parameterization
- Authors: Rui Li, Chaozhuo Li, Yanming Shen, Zeyu Zhang, Xu Chen,
- Abstract summary: GoldE is a powerful framework for knowledge graph embedding.
It features a universal orthogonal parameterization based on a generalized form of Householder reflection.
It achieves state-of-the-art performance on three standard benchmarks.
- Score: 22.86465452511445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in knowledge graph embedding (KGE) rely on Euclidean/hyperbolic orthogonal relation transformations to model intrinsic logical patterns and topological structures. However, existing approaches are confined to rigid relational orthogonalization with restricted dimension and homogeneous geometry, leading to deficient modeling capability. In this work, we move beyond these approaches in terms of both dimension and geometry by introducing a powerful framework named GoldE, which features a universal orthogonal parameterization based on a generalized form of Householder reflection. Such parameterization can naturally achieve dimensional extension and geometric unification with theoretical guarantees, enabling our framework to simultaneously capture crucial logical patterns and inherent topological heterogeneity of knowledge graphs. Empirically, GoldE achieves state-of-the-art performance on three standard benchmarks. Codes are available at https://github.com/xxrep/GoldE.
Related papers
- Bridging Geometric States via Geometric Diffusion Bridge [79.60212414973002]
We introduce the Geometric Diffusion Bridge (GDB), a novel generative modeling framework that accurately bridges initial and target geometric states.
GDB employs an equivariant diffusion bridge derived by a modified version of Doob's $h$-transform for connecting geometric states.
We show that GDB surpasses existing state-of-the-art approaches, opening up a new pathway for accurately bridging geometric states.
arXiv Detail & Related papers (2024-10-31T17:59:53Z) - (Deep) Generative Geodesics [57.635187092922976]
We introduce a newian metric to assess the similarity between any two data points.
Our metric leads to the conceptual definition of generative distances and generative geodesics.
Their approximations are proven to converge to their true values under mild conditions.
arXiv Detail & Related papers (2024-07-15T21:14:02Z) - On the Completeness of Invariant Geometric Deep Learning Models [22.43250261702209]
Invariant models are capable of generating meaningful geometric representations by leveraging informative geometric features in point clouds.
We show that GeoNGNN, the geometric counterpart of one of the simplest subgraph graph neural networks (subgraph GNNs), can effectively break these corner cases' symmetry.
By leveraging GeoNGNN as a theoretical tool, we further prove that: 1) most subgraph GNNs developed in traditional graph learning can be seamlessly extended to geometric scenarios with E(3)-completeness.
arXiv Detail & Related papers (2024-02-07T13:32:53Z) - Block-Diagonal Orthogonal Relation and Matrix Entity for Knowledge Graph Embedding [5.463034010805521]
A Knowledge Graph embeddings (KGE) is to learn low-dimensional representations of entities and relations for predicting missing facts.
We introduce OrthogonalE, a novel KGE model employing matrices for entities and block-diagonal matrices for relations.
The experimental results indicate that our new KGE model, OrthogonalE, is both general and flexible, significantly outperforming state-of-the-art KGE models.
arXiv Detail & Related papers (2024-01-11T15:13:00Z) - A Hitchhiker's Guide to Geometric GNNs for 3D Atomic Systems [87.30652640973317]
Recent advances in computational modelling of atomic systems represent them as geometric graphs with atoms embedded as nodes in 3D Euclidean space.
Geometric Graph Neural Networks have emerged as the preferred machine learning architecture powering applications ranging from protein structure prediction to molecular simulations and material generation.
This paper provides a comprehensive and self-contained overview of the field of Geometric GNNs for 3D atomic systems.
arXiv Detail & Related papers (2023-12-12T18:44:19Z) - Curve Your Attention: Mixed-Curvature Transformers for Graph
Representation Learning [77.1421343649344]
We propose a generalization of Transformers towards operating entirely on the product of constant curvature spaces.
We also provide a kernelized approach to non-Euclidean attention, which enables our model to run in time and memory cost linear to the number of nodes and edges.
arXiv Detail & Related papers (2023-09-08T02:44:37Z) - Renormalization approach to the analysis and design of Hermitian and
non-Hermitian interfaces [0.0]
I describe a real-space renormalization approach that provides a unifying perspective on interface states in a wide class of Hermitian and non-Hermitian models.
The emerging interface physics are governed by a flow of microscopic interface parameters, and the properties of interface states become linked to the fixed-point topology of this flow.
arXiv Detail & Related papers (2022-08-31T04:17:54Z) - Dist2Cycle: A Simplicial Neural Network for Homology Localization [66.15805004725809]
Simplicial complexes can be viewed as high dimensional generalizations of graphs that explicitly encode multi-way ordered relations.
We propose a graph convolutional model for learning functions parametrized by the $k$-homological features of simplicial complexes.
arXiv Detail & Related papers (2021-10-28T14:59:41Z) - Knowledge Graph Embeddings in Geometric Algebras [14.269860621624392]
We introduce a novel geometric algebra-based KG embedding framework, GeomE.
Our framework subsumes several state-of-the-art KG embedding approaches and is advantageous with its ability of modeling various key relation patterns.
Experimental results on multiple benchmark knowledge graphs show that theproposed approach outperforms existing state-of-the-art models for link prediction.
arXiv Detail & Related papers (2020-10-02T13:36:24Z) - DSG-Net: Learning Disentangled Structure and Geometry for 3D Shape
Generation [98.96086261213578]
We introduce DSG-Net, a deep neural network that learns a disentangled structured and geometric mesh representation for 3D shapes.
This supports a range of novel shape generation applications with disentangled control, such as of structure (geometry) while keeping geometry (structure) unchanged.
Our method not only supports controllable generation applications but also produces high-quality synthesized shapes, outperforming state-of-the-art methods.
arXiv Detail & Related papers (2020-08-12T17:06:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.