SMART: Relation-Aware Learning of Geometric Representations for Knowledge Graphs
- URL: http://arxiv.org/abs/2507.13001v1
- Date: Thu, 17 Jul 2025 11:18:08 GMT
- Title: SMART: Relation-Aware Learning of Geometric Representations for Knowledge Graphs
- Authors: Kossi Amouzouvi, Bowen Song, Andrea Coletta, Luigi Bellomarini, Jens Lehmann, Sahar Vahdati,
- Abstract summary: We propose a framework that evaluates how well each relation fits with different geometric transformations.<n>Based on this ranking, the model can: (1) assign the best-matching transformation to each relation, or (2) use majority voting to choose one transformation type to apply across all relations.
- Score: 7.612535740166837
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge graph representation learning approaches provide a mapping between symbolic knowledge in the form of triples in a knowledge graph (KG) and their feature vectors. Knowledge graph embedding (KGE) models often represent relations in a KG as geometric transformations. Most state-of-the-art (SOTA) KGE models are derived from elementary geometric transformations (EGTs), such as translation, scaling, rotation, and reflection, or their combinations. These geometric transformations enable the models to effectively preserve specific structural and relational patterns of the KG. However, the current use of EGTs by KGEs remains insufficient without considering relation-specific transformations. Although recent models attempted to address this problem by ensembling SOTA baseline models in different ways, only a single or composite version of geometric transformations are used by such baselines to represent all the relations. In this paper, we propose a framework that evaluates how well each relation fits with different geometric transformations. Based on this ranking, the model can: (1) assign the best-matching transformation to each relation, or (2) use majority voting to choose one transformation type to apply across all relations. That is, the model learns a single relation-specific EGT in low dimensional vector space through an attention mechanism. Furthermore, we use the correlation between relations and EGTs, which are learned in a low dimension, for relation embeddings in a high dimensional vector space. The effectiveness of our models is demonstrated through comprehensive evaluations on three benchmark KGs as well as a real-world financial KG, witnessing a performance comparable to leading models
Related papers
- Knowledge Graph Embeddings: A Comprehensive Survey on Capturing Relation Properties [5.651919225343915]
Knowledge Graph Embedding (KGE) techniques play a pivotal role in transforming symbolic Knowledge Graphs into numerical representations.<n>This paper addresses the complex mapping properties inherent in relations, such as one-to-one, one-to-many, many-to-one, and many-to-many mappings.<n>We explore innovative ideas such as integrating multimodal information into KGE, enhancing relation pattern modeling with rules, and developing models to capture relation characteristics in dynamic KGE settings.
arXiv Detail & Related papers (2024-10-16T08:54:52Z) - A Survey of Geometric Graph Neural Networks: Data Structures, Models and Applications [71.809127869349]
This paper formalizes geometric graph as the data structure, on top of which we provide a unified view of existing models from the geometric message passing perspective.<n>We also summarize the applications as well as the related datasets to facilitate later research for methodology development and experimental evaluation.
arXiv Detail & Related papers (2024-03-01T12:13:04Z) - A Comprehensive Study on Knowledge Graph Embedding over Relational
Patterns Based on Rule Learning [49.09125100268454]
Knowledge Graph Embedding (KGE) has proven to be an effective approach to solving the Knowledge Completion Graph (KGC) task.
Relational patterns are an important factor in the performance of KGE models.
We introduce a training-free method to enhance KGE models' performance over various relational patterns.
arXiv Detail & Related papers (2023-08-15T17:30:57Z) - Geometric Clifford Algebra Networks [53.456211342585824]
We propose Geometric Clifford Algebra Networks (GCANs) for modeling dynamical systems.
GCANs are based on symmetry group transformations using geometric (Clifford) algebras.
arXiv Detail & Related papers (2023-02-13T18:48:33Z) - Transformer-based Dual Relation Graph for Multi-label Image Recognition [56.12543717723385]
We propose a novel Transformer-based Dual Relation learning framework.
We explore two aspects of correlation, i.e., structural relation graph and semantic relation graph.
Our approach achieves new state-of-the-art on two popular multi-label recognition benchmarks.
arXiv Detail & Related papers (2021-10-10T07:14:52Z) - BiQUE: Biquaternionic Embeddings of Knowledge Graphs [9.107095800991333]
Existing knowledge graph embeddings (KGEs) compactly encode multi-relational knowledge graphs (KGs)
It is crucial for KGE models to unify multiple geometric transformations so as to fully cover the multifarious relations in KGs.
We propose BiQUE, a novel model that employs biquaternions to integrate multiple geometric transformations.
arXiv Detail & Related papers (2021-09-29T13:05:32Z) - Self-supervised Geometric Perception [96.89966337518854]
Self-supervised geometric perception is a framework to learn a feature descriptor for correspondence matching without any ground-truth geometric model labels.
We show that SGP achieves state-of-the-art performance that is on-par or superior to the supervised oracles trained using ground-truth labels.
arXiv Detail & Related papers (2021-03-04T15:34:43Z) - Motif Learning in Knowledge Graphs Using Trajectories Of Differential
Equations [14.279419014064047]
Knowledge Graph Embeddings (KGEs) have shown promising performance on link prediction tasks.
Many KGEs use the flat geometry which renders them incapable of preserving complex structures.
We propose a neuro differential KGE that embeds nodes of a KG on the trajectories of Ordinary Differential Equations (ODEs)
arXiv Detail & Related papers (2020-10-13T20:53:17Z) - Knowledge Graph Embeddings in Geometric Algebras [14.269860621624392]
We introduce a novel geometric algebra-based KG embedding framework, GeomE.
Our framework subsumes several state-of-the-art KG embedding approaches and is advantageous with its ability of modeling various key relation patterns.
Experimental results on multiple benchmark knowledge graphs show that theproposed approach outperforms existing state-of-the-art models for link prediction.
arXiv Detail & Related papers (2020-10-02T13:36:24Z) - DensE: An Enhanced Non-commutative Representation for Knowledge Graph
Embedding with Adaptive Semantic Hierarchy [4.607120217372668]
We develop a novel knowledge graph embedding method, named DensE, to provide an improved modeling scheme for the complex composition patterns of relations.
Our method decomposes each relation into an SO(3) group-based rotation operator and a scaling operator in the three dimensional (3-D) Euclidean space.
Experimental results on multiple benchmark knowledge graphs show that DensE outperforms the current state-of-the-art models for missing link prediction.
arXiv Detail & Related papers (2020-08-11T06:45:50Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.