論文の概要: Dual-Branch Network for Portrait Image Quality Assessment
- arxiv url: http://arxiv.org/abs/2405.08555v1
- Date: Tue, 14 May 2024 12:43:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 14:18:43.132763
- Title: Dual-Branch Network for Portrait Image Quality Assessment
- Title(参考訳): 画像品質評価のためのデュアルブランチネットワーク
- Authors: Wei Sun, Weixia Zhang, Yanwei Jiang, Haoning Wu, Zicheng Zhang, Jun Jia, Yingjie Zhou, Zhongpeng Ji, Xiongkuo Min, Weisi Lin, Guangtao Zhai,
- Abstract要約: ポートレート画像品質評価のためのデュアルブランチネットワーク(PIQA)を提案する。
我々は2つのバックボーンネットワーク(textiti.e., Swin Transformer-B)を使用して、肖像画全体と顔画像から高品質な特徴を抽出する。
我々は、画像シーンの分類と品質評価モデルであるLIQEを利用して、品質認識とシーン固有の特徴を補助的特徴として捉えている。
- 参考スコア(独自算出の注目度): 76.27716058987251
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Portrait images typically consist of a salient person against diverse backgrounds. With the development of mobile devices and image processing techniques, users can conveniently capture portrait images anytime and anywhere. However, the quality of these portraits may suffer from the degradation caused by unfavorable environmental conditions, subpar photography techniques, and inferior capturing devices. In this paper, we introduce a dual-branch network for portrait image quality assessment (PIQA), which can effectively address how the salient person and the background of a portrait image influence its visual quality. Specifically, we utilize two backbone networks (\textit{i.e.,} Swin Transformer-B) to extract the quality-aware features from the entire portrait image and the facial image cropped from it. To enhance the quality-aware feature representation of the backbones, we pre-train them on the large-scale video quality assessment dataset LSVQ and the large-scale facial image quality assessment dataset GFIQA. Additionally, we leverage LIQE, an image scene classification and quality assessment model, to capture the quality-aware and scene-specific features as the auxiliary features. Finally, we concatenate these features and regress them into quality scores via a multi-perception layer (MLP). We employ the fidelity loss to train the model via a learning-to-rank manner to mitigate inconsistencies in quality scores in the portrait image quality assessment dataset PIQ. Experimental results demonstrate that the proposed model achieves superior performance in the PIQ dataset, validating its effectiveness. The code is available at \url{https://github.com/sunwei925/DN-PIQA.git}.
- Abstract(参考訳): ポートレート画像は、典型的には、様々な背景に対して敬意を表した人物で構成されている。
モバイルデバイスの開発や画像処理技術により、ユーザーはいつでもどこでも肖像画を撮影できる。
しかし,これらの肖像画の画質は,環境条件の悪さ,撮影技術が劣る,撮影装置が劣るなどの劣化に悩まされる可能性がある。
本稿では、ポートレート画像品質評価のためのデュアルブランチネットワーク(PIQA)を提案する。
具体的には,2つのバックボーンネットワーク(\textit{i.e.} Swin Transformer-B)を用いて,画像全体と顔画像から高品質な特徴を抽出する。
背骨の質を意識した特徴表現を強化するため,大規模ビデオ品質評価データセットLSVQと大規模顔画像品質評価データセットGFIQAで事前訓練を行った。
さらに、画像シーンの分類と品質評価モデルであるLIQEを利用して、品質認識とシーン固有の特徴を補助的特徴として捉える。
最後に、これらの特徴を結合し、マルチパーセプション層(MLP)を介して品質スコアに分解する。
我々は、画像品質評価データセットPIQにおける品質スコアの不整合を軽減するために、学習からランクまでの方法でモデルをトレーニングするために、忠実度損失を用いる。
実験により,提案モデルがPIQデータセットにおいて優れた性能を示し,その有効性を検証した。
コードは \url{https://github.com/sunwei925/DN-PIQA.git} で公開されている。
関連論文リスト
- Dual-Representation Interaction Driven Image Quality Assessment with Restoration Assistance [11.983231834400698]
歪み画像の非参照画像品質評価は、画像内容のばらつきと歪みの多様性のために常に難しい問題である。
以前のIQAモデルは、主に、品質スコア予測のための品質認識表現を得るために、合成画像の明示的な単一品質特徴を符号化していた。
低画質画像の劣化・品質情報を別々にモデル化するDRI法を提案する。
論文 参考訳(メタデータ) (2024-11-26T12:48:47Z) - Q-Ground: Image Quality Grounding with Large Multi-modality Models [61.72022069880346]
Q-Groundは、大規模な視覚的品質グラウンドに取り組むための最初のフレームワークである。
Q-Groundは、大規模なマルチモダリティモデルと詳細な視覚的品質分析を組み合わせる。
コントリビューションの中心は、QGround-100Kデータセットの導入です。
論文 参考訳(メタデータ) (2024-07-24T06:42:46Z) - Descriptive Image Quality Assessment in the Wild [25.503311093471076]
VLMに基づく画像品質評価(IQA)は、画像品質を言語的に記述し、人間の表現に合わせることを目指している。
野生における画像品質評価(DepictQA-Wild)について紹介する。
本手法は,評価タスクと比較タスク,簡潔かつ詳細な応答,完全参照,非参照シナリオを含む多機能IQAタスクパラダイムを含む。
論文 参考訳(メタデータ) (2024-05-29T07:49:15Z) - Helping Visually Impaired People Take Better Quality Pictures [52.03016269364854]
我々は、視覚障害者が共通の技術的歪みの発生を最小限に抑えるためのツールを開発する。
また、ユーザによる品質問題の緩和を支援する、プロトタイプのフィードバックシステムも作成しています。
論文 参考訳(メタデータ) (2023-05-14T04:37:53Z) - Re-IQA: Unsupervised Learning for Image Quality Assessment in the Wild [38.197794061203055]
教師なし環境で高レベルのコンテンツと低レベルの画像品質特徴を学習するために、2つの異なるエンコーダを訓練するためのMixture of Expertsアプローチを提案する。
本稿では,Re-IQAフレームワークから得られた高次・低次画像表現を,線形回帰モデルをトレーニングするために展開する。
本手法は,大規模画像品質評価データベース上での最先端性能を実現する。
論文 参考訳(メタデータ) (2023-04-02T05:06:51Z) - MSTRIQ: No Reference Image Quality Assessment Based on Swin Transformer
with Multi-Stage Fusion [8.338999282303755]
本稿では,Swin Transformerに基づく新しいアルゴリズムを提案する。
ローカル機能とグローバル機能の両方から情報を集約して、品質をより正確に予測する。
NTIRE 2022 Perceptual Image Quality Assessment Challengeのノーレファレンストラックで2位。
論文 参考訳(メタデータ) (2022-05-20T11:34:35Z) - Image Quality Assessment using Contrastive Learning [50.265638572116984]
我々は、補助的な問題を解決するために、対照的な対の目的を用いて深層畳み込みニューラルネットワーク(CNN)を訓練する。
本研究では,最新のNR画像品質モデルと比較して,ContriQUEが競争性能を向上することを示す。
以上の結果から,大きなラベル付き主観的画像品質データセットを必要とせずに,知覚的関連性を持つ強力な品質表現が得られることが示唆された。
論文 参考訳(メタデータ) (2021-10-25T21:01:00Z) - MUSIQ: Multi-scale Image Quality Transformer [22.908901641767688]
現在のIQA法は畳み込みニューラルネットワーク(CNN)に基づいている
マルチスケール画像品質変換器(MUSIQ)を設計し,サイズやアスペクト比の異なるネイティブ解像度画像を処理する。
提案手法は,マルチスケールの画像表現により,様々な粒度で画像品質を捉えることができる。
論文 参考訳(メタデータ) (2021-08-12T23:36:22Z) - Towards Unsupervised Deep Image Enhancement with Generative Adversarial
Network [92.01145655155374]
監視されていない画像強調生成ネットワーク(UEGAN)を提案する。
教師なしの方法で所望の特性を持つ画像の集合から、対応する画像と画像のマッピングを学習する。
その結果,提案モデルは画像の美的品質を効果的に向上することがわかった。
論文 参考訳(メタデータ) (2020-12-30T03:22:46Z) - Uncertainty-Aware Blind Image Quality Assessment in the Laboratory and
Wild [98.48284827503409]
我々は,テキスト化BIQAモデルを開発し,それを合成的および現実的歪みの両方で訓練するアプローチを提案する。
我々は、多数の画像ペアに対してBIQAのためのディープニューラルネットワークを最適化するために、忠実度損失を用いる。
6つのIQAデータベースの実験は、実験室と野生動物における画像品質を盲目的に評価する学習手法の可能性を示唆している。
論文 参考訳(メタデータ) (2020-05-28T13:35:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。