Generating quantum dissonance via local operations
- URL: http://arxiv.org/abs/2405.08568v2
- Date: Mon, 12 Aug 2024 10:52:09 GMT
- Title: Generating quantum dissonance via local operations
- Authors: Gökhan Torun,
- Abstract summary: Quantum dissonance refers to how quantum discord appears as a non-classical correlation in a system without entanglement.
We propose two explicit procedures for obtaining separable Werner states, a type of mixed state with nonzero QD.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Correlations may arise in quantum systems through various means, of which the most remarkable one is quantum entanglement. Additionally, there are systems that exhibit non-classical correlations even in the absence of entanglement. Quantum dissonance refers to how quantum discord (QD) -- the difference between the total correlation and the classical correlation in a given quantum state -- appears as a non-classical correlation in a system without entanglement. It could be said that QD has the potential to provide a more inclusive viewpoint for discerning the non-classical correlations. In this work, we address the problem of manipulating the QD between two subsystems through local operations. We propose two explicit procedures for obtaining separable Werner states, a type of mixed state with nonzero QD. Both approaches involve performing local operations on classically correlated states and offers a step-by-step method for obtaining separable Werner states with nonzero discord, providing an alternative (explicit and user-friendly) to existing methods.
Related papers
- Nonlocal Locking of Observable Quantities: A Faithful Signature of Nonclassical Correlations [0.0]
We propose a general framework to investigate nonclassical correlations in multipartite quantum states.
We unveil an intriguing phenomenon referred to as nonlocal locking of observable quantities', where the value of an observable quantity gets locked in the correlation of a nonclassical state.
arXiv Detail & Related papers (2024-07-11T08:38:51Z) - Quantitative non-classicality of mediated interactions [0.5033155053523042]
We show that the gain of quantum entanglement between the masses indicates non-classicality of the states of the whole tripartite system.
We derive inequalities whose violation indicates non-commutativity and non-decomposability.
We give applications of these techniques in two different fields: for detecting non-classicality of gravitational interaction and in bounding the Trotter error in quantum simulations.
arXiv Detail & Related papers (2023-03-22T09:58:26Z) - Bell inequalities with overlapping measurements [52.81011822909395]
We study Bell inequalities where measurements of different parties can have overlap.
This allows to accommodate problems in quantum information.
The scenarios considered show an interesting behaviour with respect to Hilbert space dimension, overlap, and symmetry.
arXiv Detail & Related papers (2023-03-03T18:11:05Z) - Physical interpretation of nonlocal quantum correlation through local
description of subsystems [19.542805787744133]
We propose the physical interpretation of nonlocal quantum correlation between two systems.
Different nonlocal quantum correlations can be discriminated from a single uncertainty relation derived under local hidden state (LHS)-LHS model only.
arXiv Detail & Related papers (2022-10-01T10:13:40Z) - Learning Distributed Quantum State Discrimination with Noisy Classical
Communications [39.000858564696856]
This paper presents Noise Aware-LOCCNet (NA-LOCCNet) for distributed quantum state discrimination in the presence of noisy communication.
We propose specific ansatzes for the case of two observed qubit pairs, and we describe a noise-aware training design criterion.
arXiv Detail & Related papers (2022-07-22T22:06:56Z) - Robustness of non-locality in many-body open quantum systems [0.0]
Non-locality consists in the existence of non-classical correlations between local measurements.
We show that non-local correlations are present, can be detected and might be robust against noise in many-body open quantum systems.
arXiv Detail & Related papers (2022-02-24T13:05:36Z) - Quantum-classical entropy analysis for nonlinearly-coupled
continuous-variable bipartite systems [0.0]
We investigate the behavior of classical analogs arising upon the removal of interference traits.
By comparing the quantum and classical entropy values, it is shown that, instead of entanglement production, such entropies rather provide us with information.
arXiv Detail & Related papers (2021-11-19T11:39:15Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - Enhancing nonclassical bosonic correlations in a Quantum Walk network
through experimental control of disorder [50.591267188664666]
We experimentally realize a controllable inhomogenous Quantum Walk dynamics.
We observe two photon states which exhibit an enhancement in the quantum correlations between two modes of the network.
arXiv Detail & Related papers (2021-02-09T10:57:00Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.