Nonlocal Locking of Observable Quantities: A Faithful Signature of Nonclassical Correlations
- URL: http://arxiv.org/abs/2407.08292v1
- Date: Thu, 11 Jul 2024 08:38:51 GMT
- Title: Nonlocal Locking of Observable Quantities: A Faithful Signature of Nonclassical Correlations
- Authors: Mir Alimuddin, Snehasish Roy Chowdhury, Ram Krishna Patra, Subhendu B. Ghosh, Tommaso Tufarelli, Gerardo Adesso, Manik Banik,
- Abstract summary: We propose a general framework to investigate nonclassical correlations in multipartite quantum states.
We unveil an intriguing phenomenon referred to as nonlocal locking of observable quantities', where the value of an observable quantity gets locked in the correlation of a nonclassical state.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nonclassicality in composite quantum systems depicts several puzzling manifestations, with Einstein-Podolsky-Rosen entanglement, Schr\"odinger steering, and Bell nonlocality being the most celebrated ones. In addition to those, an unentangled quantum state can also exhibit nonclassicality, as evidenced from notions such as quantum discord and work deficit. Here, we propose a general framework to investigate nonclassical correlations in multipartite quantum states. The distinct signatures left on observable quantities, depending on whether the sub-parts of a composite system are probed separately or jointly, provide an operational avenue to construct different quantifiers that faithfully capture signatures of nonclassicality in quantum states. Along the line we unveil an intriguing phenomenon referred to as `nonlocal locking of observable quantities', where the value of an observable quantity gets locked in the correlation of a nonclassical state. Our approach reduces the experimental demand for verification of nonclassicality in composite systems and can find applications for enhanced energy storage in quantum thermodynamical devices.
Related papers
- Precision bounds for multiple currents in open quantum systems [37.69303106863453]
We derivation quantum TURs and KURs for multiple observables in open quantum systems undergoing Markovian dynamics.
Our bounds are tighter than previously derived quantum TURs and KURs for single observables.
We also find an intriguing quantum signature of correlations captured by the off-diagonal element of the Fisher information matrix.
arXiv Detail & Related papers (2024-11-13T23:38:24Z) - The role of non-classicality in mediated spatial quantum correlations [0.0]
The study of non-classicality is essential to understand the quantum-to-classical transition in physical systems.
We propose a new inequality that quantitatively links the increase in quantum correlations between the probes to the degree of non-commutativity of the mediator's observables.
arXiv Detail & Related papers (2024-10-01T16:07:04Z) - Causal Data Fusion with Quantum Confounders [0.8437187555622164]
We show quantum experiments can generate observational and interventional data with a non-classical signature when pieced together that cannot be reproduced classically.
We show that non-classicality genuine to the fusion of multiple data tables is achievable with quantum resources.
Our work shows incorporating interventions can be a powerful tool to detect non-classicality beyond the violation of a standard Bell inequality.
arXiv Detail & Related papers (2024-05-29T17:10:30Z) - Quantum Non-classicality from Causal Data Fusion [0.8437187555622164]
Bell's theorem shows that quantum correlations are incompatible with a classical theory of cause and effect.
We investigate the problem of causal data fusion that aims to piece together data tables collected under heterogeneous conditions.
We demonstrate the existence of quantum non-classicality resulting from data fusion, even in scenarios where achieving standard Bell non-classicality is impossible.
arXiv Detail & Related papers (2024-05-29T16:35:59Z) - Generating quantum dissonance via local operations [0.0]
Quantum dissonance refers to how quantum discord appears as a non-classical correlation in a system without entanglement.
We propose two explicit procedures for obtaining separable Werner states, a type of mixed state with nonzero QD.
arXiv Detail & Related papers (2024-05-14T13:02:05Z) - A computational test of quantum contextuality, and even simpler proofs of quantumness [43.25018099464869]
We show that an arbitrary contextuality game can be compiled into an operational "test of contextuality" involving a single quantum device.
Our work can be seen as using cryptography to enforce spatial separation within subsystems of a single quantum device.
arXiv Detail & Related papers (2024-05-10T19:30:23Z) - Classical Verification of Quantum Learning [42.362388367152256]
We develop a framework for classical verification of quantum learning.
We propose a new quantum data access model that we call "mixture-of-superpositions" quantum examples.
Our results demonstrate that the potential power of quantum data for learning tasks, while not unlimited, can be utilized by classical agents.
arXiv Detail & Related papers (2023-06-08T00:31:27Z) - Robustness of non-locality in many-body open quantum systems [0.0]
Non-locality consists in the existence of non-classical correlations between local measurements.
We show that non-local correlations are present, can be detected and might be robust against noise in many-body open quantum systems.
arXiv Detail & Related papers (2022-02-24T13:05:36Z) - Experimental violations of Leggett-Garg's inequalities on a quantum
computer [77.34726150561087]
We experimentally observe the violations of Leggett-Garg-Bell's inequalities on single and multi-qubit systems.
Our analysis highlights the limits of nowadays quantum platforms, showing that the above-mentioned correlation functions deviate from theoretical prediction as the number of qubits and the depth of the circuit grow.
arXiv Detail & Related papers (2021-09-06T14:35:15Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.